Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller

Sucharita Pal;Dola Sinha;Mou Das Mahapatra;Saibal Majumder;Sovan Bhattacharya;Chandan Bandyopadhyay
{"title":"Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller","authors":"Sucharita Pal;Dola Sinha;Mou Das Mahapatra;Saibal Majumder;Sovan Bhattacharya;Chandan Bandyopadhyay","doi":"10.23919/CJEE.2024.000094","DOIUrl":null,"url":null,"abstract":"The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.","PeriodicalId":36428,"journal":{"name":"Chinese Journal of Electrical Engineering","volume":"10 4","pages":"119-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10820899","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Electrical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://ieeexplore.ieee.org/document/10820899/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The need for renewable energy access has led to the use of variable input converter approaches because renewable energy sources often generate electricity in an unpredictable manner. A high-performance multi-input boost converter is developed to provide the necessary output voltage and power while accommodating variations in input sources. This converter is specifically designed for the efficient usage of renewable energy. The proposed architecture integrates three separate unidirectional input power sources: photovoltaics, fuel cells, and storage system batteries. The architecture has five switches, and the implementation of each switch in the converter is achieved by applying the calculated duty ratios in various operating states. The closed-loop response of the converter with a proportional-integral (PI) controller-based switching system is examined by analyzing the Matlab-Simulink model utilizing a proportional-integral derivative (PID) tuner. The controller can deliver the desired output voltage of 400 V and an average power of 2 kW while exhibiting low switching transient effects. Therefore, the proposed multi-input interleaved boost converter demonstrates robust results for real-time applications by effectively harnessing renewable power sources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带调谐比例积分控制器的多输入交错升压变换器的性能评价
对可再生能源获取的需求导致使用可变输入转换器方法,因为可再生能源通常以不可预测的方式发电。开发了一种高性能多输入升压变换器,以提供必要的输出电压和功率,同时适应输入源的变化。这种转换器是专门为有效利用可再生能源而设计的。提出的架构集成了三个独立的单向输入电源:光伏、燃料电池和存储系统电池。该结构有5个开关,每个开关在变换器中的实现是通过在各种工作状态下应用计算的占空比来实现的。通过利用比例积分导数(PID)调谐器分析Matlab-Simulink模型,研究了基于比例积分(PI)控制器的开关系统变换器的闭环响应。该控制器可以提供所需的输出电压为400 V,平均功率为2 kW,同时表现出低开关瞬态效应。因此,所提出的多输入交错升压变换器通过有效地利用可再生能源,在实时应用中显示了稳健的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Electrical Engineering
Chinese Journal of Electrical Engineering Energy-Energy Engineering and Power Technology
CiteScore
7.80
自引率
0.00%
发文量
621
审稿时长
12 weeks
期刊最新文献
Contents Front Cover Minimizing Power Losses in Distribution Networks: A Comprehensive Review Performance Evaluation of a Multi-input Interleaved Boost Converter with a Tuned Proportional-integral Controller Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1