Analysis and Optimization of Burn-In Techniques for Screening Commercial 1.2-kV SiC MOSFETs

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-12-09 DOI:10.1109/TED.2024.3508674
Limeng Shi;Hengyu Yu;Michael Jin;Jiashu Qian;Monikuntala Bhattacharya;Shiva Houshmand;Atsushi Shimbori;Marvin H. White;Anant K. Agarwal
{"title":"Analysis and Optimization of Burn-In Techniques for Screening Commercial 1.2-kV SiC MOSFETs","authors":"Limeng Shi;Hengyu Yu;Michael Jin;Jiashu Qian;Monikuntala Bhattacharya;Shiva Houshmand;Atsushi Shimbori;Marvin H. White;Anant K. Agarwal","doi":"10.1109/TED.2024.3508674","DOIUrl":null,"url":null,"abstract":"The burn-in technique is a well-established screening method designed to eliminate early failures in the gate oxide of silicon carbide (SiC) MOSFETs. Despite its widespread application, optimizing the burn-in technique to improve both efficiency and feasibility remains a significant challenge. This study investigates the performance of commercial 1.2-kV SiC planar MOSFETs following the burn-in process, focusing on parameters, such as threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {th}}\\text {)}$ </tex-math></inline-formula>\n,\n<sc>on</small>\n-resistance (\n<inline-formula> <tex-math>${R}_{\\text {on}}\\text {)}$ </tex-math></inline-formula>\n, and subthreshold hysteresis (Hy). The degradation characteristics of SiC MOSFETs during the burn-in and subsequent recovery processes are thoroughly analyzed. The results indicate that aggressive burn-in conditions, such as elevated oxide electric fields or prolonged stress durations, induce defect generation at or near the SiC/SiO2 interface. These new defects and pre-existing defects promote electron trapping, leading to an increase in \n<inline-formula> <tex-math>${V}_{\\text {th}}$ </tex-math></inline-formula>\n and \n<inline-formula> <tex-math>${R}_{\\text {on}}$ </tex-math></inline-formula>\n. Therefore, this study proposes two optimization strategies to refine the burn-in technique while maintaining the intrinsic performance of SiC MOSFETs under demanding conditions. The first approach involves identifying a critical stress duration to minimize defect generation during the burn-in process. The second approach utilizes pulse-mode burn-in technology, incorporating a negative gate bias to reduce the effects of electron trapping.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"331-337"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10781438/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The burn-in technique is a well-established screening method designed to eliminate early failures in the gate oxide of silicon carbide (SiC) MOSFETs. Despite its widespread application, optimizing the burn-in technique to improve both efficiency and feasibility remains a significant challenge. This study investigates the performance of commercial 1.2-kV SiC planar MOSFETs following the burn-in process, focusing on parameters, such as threshold voltage ( ${V}_{\text {th}}\text {)}$ , on -resistance ( ${R}_{\text {on}}\text {)}$ , and subthreshold hysteresis (Hy). The degradation characteristics of SiC MOSFETs during the burn-in and subsequent recovery processes are thoroughly analyzed. The results indicate that aggressive burn-in conditions, such as elevated oxide electric fields or prolonged stress durations, induce defect generation at or near the SiC/SiO2 interface. These new defects and pre-existing defects promote electron trapping, leading to an increase in ${V}_{\text {th}}$ and ${R}_{\text {on}}$ . Therefore, this study proposes two optimization strategies to refine the burn-in technique while maintaining the intrinsic performance of SiC MOSFETs under demanding conditions. The first approach involves identifying a critical stress duration to minimize defect generation during the burn-in process. The second approach utilizes pulse-mode burn-in technology, incorporating a negative gate bias to reduce the effects of electron trapping.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1.2 kv SiC mosfet商用筛分老化技术分析与优化
烧蚀技术是一种成熟的筛选方法,旨在消除碳化硅(SiC) mosfet栅极氧化物的早期失效。尽管其应用广泛,但优化老化技术以提高效率和可行性仍然是一个重大挑战。本研究考察了商用1.2 kv SiC平面mosfet在烧坏过程中的性能,重点研究了阈值电压(${V}_{\text {th}}\text{)}$、导通电阻(${R}_{\text {on}}\text{)}$和亚阈值迟滞(Hy)等参数。深入分析了碳化硅mosfet在烧进和随后的恢复过程中的退化特性。结果表明,氧化电场升高或应力持续时间延长等侵略性烧进条件会导致SiC/SiO2界面或其附近产生缺陷。这些新缺陷和已有缺陷促进了电子捕获,导致${V}_{\text {th}}$和${R}_{\text {on}}$的增加。因此,本研究提出了两种优化策略,以改进老化技术,同时在苛刻的条件下保持SiC mosfet的固有性能。第一种方法包括确定一个临界应力持续时间,以最小化在老化过程中产生的缺陷。第二种方法利用脉冲模式老化技术,结合负栅极偏置来减少电子捕获的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1