Investigation of Thermal Sensitivity and Linearity of Quantum Well-Based Heterojunction Bipolar Transistor

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-19 DOI:10.1109/TED.2024.3492153
Mukul Kumar;Shu-Wei Chang;Chao-Hsin Wu
{"title":"Investigation of Thermal Sensitivity and Linearity of Quantum Well-Based Heterojunction Bipolar Transistor","authors":"Mukul Kumar;Shu-Wei Chang;Chao-Hsin Wu","doi":"10.1109/TED.2024.3492153","DOIUrl":null,"url":null,"abstract":"This study investigates variations in quantum well (QW) width and the influence of temperature on the electrical behavior of quantum well heterojunction bipolar transistors (QW-HBTs), reflecting recent interest in thermal sensor technology. We propose a modified charge control model to accurately predict this temperature-dependent current gain behavior. Through experimental and simulation studies, we show that as temperature rises, carriers stored within the QW gain energy to escape, leading to an increase in current gain. The study systematically investigates the impact of QW width on thermal sensitivity and linearity, revealing an optimal compromise at a QW width of 90 Å, particularly in the temperature range of 25 °C–100 °C. At 100 °C, the thermal sensitivity of a QW width of 90 Å is 1.34 mA/°C, with the fitting linearity parameter B equal to 0.67748. This study offers a best structure design that can be applied for the development of high-performance temperature sensors integrated into optoelectronic integrated circuits (OEICs), promising advancements in temperature sensing technologies.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"111-118"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10757358/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates variations in quantum well (QW) width and the influence of temperature on the electrical behavior of quantum well heterojunction bipolar transistors (QW-HBTs), reflecting recent interest in thermal sensor technology. We propose a modified charge control model to accurately predict this temperature-dependent current gain behavior. Through experimental and simulation studies, we show that as temperature rises, carriers stored within the QW gain energy to escape, leading to an increase in current gain. The study systematically investigates the impact of QW width on thermal sensitivity and linearity, revealing an optimal compromise at a QW width of 90 Å, particularly in the temperature range of 25 °C–100 °C. At 100 °C, the thermal sensitivity of a QW width of 90 Å is 1.34 mA/°C, with the fitting linearity parameter B equal to 0.67748. This study offers a best structure design that can be applied for the development of high-performance temperature sensors integrated into optoelectronic integrated circuits (OEICs), promising advancements in temperature sensing technologies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于量子阱的异质结双极晶体管的热敏度和线性度研究
本研究探讨了量子阱(QW)宽度的变化以及温度对量子阱异质结双极晶体管(QW- hbts)电学行为的影响,反映了最近人们对热传感器技术的兴趣。我们提出了一个改进的电荷控制模型来准确地预测这种温度相关的电流增益行为。通过实验和仿真研究,我们发现随着温度的升高,存储在量子阱内的载流子获得能量逃逸,导致电流增益增加。该研究系统地研究了QW宽度对热敏性和线性的影响,揭示了QW宽度为90 Å时的最佳折衷方案,特别是在25°C - 100°C的温度范围内。在100℃时,QW宽度为90 Å的热敏度为1.34 mA/℃,拟合线性参数B = 0.67748。该研究提供了一种最佳结构设计,可用于开发集成到光电集成电路(OEICs)中的高性能温度传感器,有望在温度传感技术方面取得进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1