Evaluation of Funnel Models on Calculation of Ion-Induced Collected Charge

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-22 DOI:10.1109/TED.2024.3497927
Vitor A. P. Aguiar;Nilberto H. Medina;Nemitala Added;Saulo G. Alberton;Eduardo L. A. Macchione;Marcilei A. Guazzelli;Marco A. A. Melo;Juliano A. Oliveira;Renato C. Giacomini;Fernando R. Aguirre;Paula R. P. Allegro;Hellen C. S. Zaggato;Isaac J. Sayeg
{"title":"Evaluation of Funnel Models on Calculation of Ion-Induced Collected Charge","authors":"Vitor A. P. Aguiar;Nilberto H. Medina;Nemitala Added;Saulo G. Alberton;Eduardo L. A. Macchione;Marcilei A. Guazzelli;Marco A. A. Melo;Juliano A. Oliveira;Renato C. Giacomini;Fernando R. Aguirre;Paula R. P. Allegro;Hellen C. S. Zaggato;Isaac J. Sayeg","doi":"10.1109/TED.2024.3497927","DOIUrl":null,"url":null,"abstract":"Charge funneling is a widely used description of charge collection dynamics in semiconductor devices struck by ion irradiation, but it still relies on semiempirical parameters heavily dependent upon available data, which impacts its use for device or circuit-level simulations. The objective of this article is to analyze a comprehensive dataset from low-energy heavy-ion irradiations on a p-MOSFET, varying both the linear energy transfer (LET) and ion penetration depth within the device. A novel methodology is proposed to achieve this goal by analyzing devices without prior knowledge of their parameters, using data from light ion irradiations. Statistical analysis of the data and comparisons to simulated values showed that a LET-dependent funnel length is a more accurate description of the phenomenon than the conventional constant-length approach. A new, lower value for the funnel model’s shielding parameter k was identified, and the method also allowed for determining the metal and passivation layer thicknesses of the device. These results strengthen the reliability of the funnel model, making it a more robust tool for simulation applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"31-36"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10765916/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Charge funneling is a widely used description of charge collection dynamics in semiconductor devices struck by ion irradiation, but it still relies on semiempirical parameters heavily dependent upon available data, which impacts its use for device or circuit-level simulations. The objective of this article is to analyze a comprehensive dataset from low-energy heavy-ion irradiations on a p-MOSFET, varying both the linear energy transfer (LET) and ion penetration depth within the device. A novel methodology is proposed to achieve this goal by analyzing devices without prior knowledge of their parameters, using data from light ion irradiations. Statistical analysis of the data and comparisons to simulated values showed that a LET-dependent funnel length is a more accurate description of the phenomenon than the conventional constant-length approach. A new, lower value for the funnel model’s shielding parameter k was identified, and the method also allowed for determining the metal and passivation layer thicknesses of the device. These results strengthen the reliability of the funnel model, making it a more robust tool for simulation applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
漏斗模型在离子诱导电荷计算中的评价
电荷漏斗是一种广泛使用的描述离子辐照下半导体器件电荷收集动力学的方法,但它仍然依赖于半经验参数,严重依赖于可用数据,这影响了其在器件或电路级模拟中的使用。本文的目的是分析p-MOSFET低能重离子辐照的综合数据集,改变器件内的线性能量转移(LET)和离子穿透深度。提出了一种新的方法来实现这一目标,通过分析器件而不事先知道其参数,使用光离子照射的数据。对数据的统计分析和与模拟值的比较表明,与let相关的漏斗长度比传统的恒定长度方法更准确地描述了这一现象。确定了漏斗模型屏蔽参数k的一个新的较低值,并且该方法还允许确定器件的金属和钝化层厚度。这些结果增强了漏斗模型的可靠性,使其成为仿真应用的更健壮的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1