Normally-Off High-Performance Diamond FET With Large VTH and Low Leakage Current

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-27 DOI:10.1109/TED.2024.3496447
Yuesong Liang;Wei Wang;Tianlin Niu;Genqiang Chen;Fei Wang;Yuxiang Du;Minghui Zhang;Yanfeng Wang;Feng Wen;Hong-Xing Wang
{"title":"Normally-Off High-Performance Diamond FET With Large VTH and Low Leakage Current","authors":"Yuesong Liang;Wei Wang;Tianlin Niu;Genqiang Chen;Fei Wang;Yuxiang Du;Minghui Zhang;Yanfeng Wang;Feng Wen;Hong-Xing Wang","doi":"10.1109/TED.2024.3496447","DOIUrl":null,"url":null,"abstract":"A normally-off high-performance hydrogenated diamond (H-diamond) field-effect transistor (FET) has been fabricated and investigated. The deep X-ray photoelectron spectroscopy (XPS) analysis reveals the Gd2O3/Gd double layer gate structure. The threshold voltage (\n<inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula>\n) is up to −1.4 V with 6-\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm gate length, which demonstrates the normally-off operation caused by the low work function of Gd and the fixed positive charge of Gd2O3 layer. The gate leakage current density J is as low as \n<inline-formula> <tex-math>$5.8\\times 10^{-{6}}$ </tex-math></inline-formula>\n A/cm2 and ON/OFF ratio is as high as \n<inline-formula> <tex-math>$10^{{10}}$ </tex-math></inline-formula>\n, which both can be due to the suppression by Gd2O3 layer. The maximum drain current density, transconductance, OFF-state drain leakage current, subthreshold swing, maximum gate oxide capacitance, and effective mobility with 6-\n<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>\nm gate length are −100 mA/mm, 18.9 mS/mm, \n<inline-formula> <tex-math>$10^{-{8}}$ </tex-math></inline-formula>\n mA/mm, 121 mV/dec, \n<inline-formula> <tex-math>$0.24~\\mu $ </tex-math></inline-formula>\nF/cm2, and 417.7 cm2/V\n<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>\ns, respectively. The trapped charge density, fixed charge density, and interface state density are \n<inline-formula> <tex-math>$4.87\\times 10^{{11}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n, \n<inline-formula> <tex-math>$3.57\\times 10^{{12}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{2}}$ </tex-math></inline-formula>\n, and \n<inline-formula> <tex-math>$1.52\\times 10^{{12}}$ </tex-math></inline-formula>\n cm\n<inline-formula> <tex-math>$^{-{2}}\\cdot $ </tex-math></inline-formula>\neV\n<inline-formula> <tex-math>$^{-{1}}$ </tex-math></inline-formula>\n, respectively. This work demonstrates a simple fabrication approach to achieve normally-off FET with large \n<inline-formula> <tex-math>${V}_{\\text {TH}}$ </tex-math></inline-formula>\n and low leakage current, which contributes to the advancement of diamond for circuit applications.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"12-16"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10767754/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

A normally-off high-performance hydrogenated diamond (H-diamond) field-effect transistor (FET) has been fabricated and investigated. The deep X-ray photoelectron spectroscopy (XPS) analysis reveals the Gd2O3/Gd double layer gate structure. The threshold voltage ( ${V}_{\text {TH}}$ ) is up to −1.4 V with 6- $\mu $ m gate length, which demonstrates the normally-off operation caused by the low work function of Gd and the fixed positive charge of Gd2O3 layer. The gate leakage current density J is as low as $5.8\times 10^{-{6}}$ A/cm2 and ON/OFF ratio is as high as $10^{{10}}$ , which both can be due to the suppression by Gd2O3 layer. The maximum drain current density, transconductance, OFF-state drain leakage current, subthreshold swing, maximum gate oxide capacitance, and effective mobility with 6- $\mu $ m gate length are −100 mA/mm, 18.9 mS/mm, $10^{-{8}}$ mA/mm, 121 mV/dec, $0.24~\mu $ F/cm2, and 417.7 cm2/V $\cdot $ s, respectively. The trapped charge density, fixed charge density, and interface state density are $4.87\times 10^{{11}}$ cm $^{-{2}}$ , $3.57\times 10^{{12}}$ cm $^{-{2}}$ , and $1.52\times 10^{{12}}$ cm $^{-{2}}\cdot $ eV $^{-{1}}$ , respectively. This work demonstrates a simple fabrication approach to achieve normally-off FET with large ${V}_{\text {TH}}$ and low leakage current, which contributes to the advancement of diamond for circuit applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
常关高电压、低漏电流的高性能金刚石场效应管
制备并研究了一种高性能常关氢化金刚石场效应晶体管(FET)。深x射线光电子能谱(XPS)分析揭示了Gd2O3/Gd双层栅结构。阈值电压(${V}_{\text {TH}}$)高达- 1.4 V,栅极长度为6- $\mu $ m,表明Gd的低功函数和Gd2O3层的固定正电荷导致了常关工作。栅极漏电流密度J低至$5.8\ × 10^{-{6}}$ A/cm2, ON/OFF比高至$10^{{10}}$,均可归因于Gd2O3层的抑制作用。最大漏极电流密度、跨导、关断漏极漏电流、亚阈值摆幅、最大栅极氧化物电容和栅极长度为6- $ $ $ m时的有效迁移率分别为- 100 mA/mm、18.9 mS/mm、$10^{- $ {8}}$ mA/mm、121 mV/dec、$0.24~\mu $ F/cm2和417.7 cm2/V $ $ cdot $ s。捕获电荷密度、固定电荷密度和界面态密度分别为$4.87\乘以10^{{11}}$ cm $^{-{2}}$、$3.57\乘以10^{{12}}$ cm $^{-{2}}$和$1.52\乘以10^{{12}}$ cm $^{-{2}}\cdot $ eV $^{-{1}}$。本工作展示了一种简单的制造方法来实现具有大${V}_{\text {TH}}$和低漏电流的常关场效应管,这有助于推进金刚石在电路应用中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1