Recovery Strategy of Fatigue-Limited Endurance in Si FeFETs With Thin HfZrO₂ Films

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-11-13 DOI:10.1109/TED.2024.3493065
Zuocheng Cai;Zhenhong Liu;Yan-Kui Liang;Xueyang Han;Shin-Yi Min;Eishin Nako;Seong-Kun Cho;Chia-Tsong Chen;Mitsuru Takenaka;Kasidit Toprasertpong;Shinichi Takagi
{"title":"Recovery Strategy of Fatigue-Limited Endurance in Si FeFETs With Thin HfZrO₂ Films","authors":"Zuocheng Cai;Zhenhong Liu;Yan-Kui Liang;Xueyang Han;Shin-Yi Min;Eishin Nako;Seong-Kun Cho;Chia-Tsong Chen;Mitsuru Takenaka;Kasidit Toprasertpong;Shinichi Takagi","doi":"10.1109/TED.2024.3493065","DOIUrl":null,"url":null,"abstract":"This study demonstrates that memory window (MW) narrowing under low voltage is caused by fatigue (polarization decrease) and can be recovered, whereas that under high voltage is caused by interface degradation and is not easily recoverable. Furthermore, we have found that the electrical field across Hf0.5Zr0.5O2 (HZO) layer (\n<inline-formula> <tex-math>${E}_{\\text {HZO}}$ </tex-math></inline-formula>\n) is the key to determine the recoverable ferroelectric fatigue, while the voltage applied on the gate (\n<inline-formula> <tex-math>${V}_{\\text {g}}$ </tex-math></inline-formula>\n) is associated with the interface degradation. Thus, thin HZO ferroelectric FETs (FeFETs) can prevent severe interface degradation through low-voltage operation (low \n<inline-formula> <tex-math>${V}_{\\text {g}}$ </tex-math></inline-formula>\n). Moreover, by systematically studying the endurance behavior and recovery strategies, we show that a recovery scheme with bipolar pulses with suitable voltage and short total time of a few microseconds is effective to recover MW narrowing of FeFETs due to ferroelectric fatigue. As a result, HZO thickness scaling is effective to achieve high endurance characteristics of FeFETs via recovery.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"467-473"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10751798/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates that memory window (MW) narrowing under low voltage is caused by fatigue (polarization decrease) and can be recovered, whereas that under high voltage is caused by interface degradation and is not easily recoverable. Furthermore, we have found that the electrical field across Hf0.5Zr0.5O2 (HZO) layer ( ${E}_{\text {HZO}}$ ) is the key to determine the recoverable ferroelectric fatigue, while the voltage applied on the gate ( ${V}_{\text {g}}$ ) is associated with the interface degradation. Thus, thin HZO ferroelectric FETs (FeFETs) can prevent severe interface degradation through low-voltage operation (low ${V}_{\text {g}}$ ). Moreover, by systematically studying the endurance behavior and recovery strategies, we show that a recovery scheme with bipolar pulses with suitable voltage and short total time of a few microseconds is effective to recover MW narrowing of FeFETs due to ferroelectric fatigue. As a result, HZO thickness scaling is effective to achieve high endurance characteristics of FeFETs via recovery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HfZrO - 2薄膜硅效应管疲劳极限耐力恢复策略
研究表明,低电压下的记忆窗口(MW)窄化是由疲劳(极化减少)引起的,可以恢复,而高电压下的记忆窗口窄化是由界面退化引起的,不容易恢复。此外,我们发现Hf0.5Zr0.5O2 (HZO)层上的电场(${E}_{\text {HZO}}$)是决定可恢复性铁电疲劳的关键,而施加在栅极上的电压(${V}_{\text {g}}$)与界面退化有关。因此,薄HZO铁电场效应管(fefet)可以通过低电压工作(low ${V}_{\text {g}}$)来防止严重的界面退化。此外,通过系统地研究其持久性能和恢复策略,我们证明了采用合适电压和短时间(几微秒)的双极脉冲恢复方案可以有效地恢复由铁电疲劳引起的效应场效应管的毫瓦变窄。因此,HZO厚度缩放可以有效地通过恢复来实现fet的高持久特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1