{"title":"Asymmetric and Symmetric Single-Pole Double-Throw With Improved Power Handling Using Indirectly Heated Phase-Change Switches","authors":"Nicolás Wainstein;Ami Orren;Rivka-Galya Nir-Harwood;Eilam Yalon;Shahar Kvatinsky","doi":"10.1109/TED.2024.3492136","DOIUrl":null,"url":null,"abstract":"Four-terminal indirectly heated phase-change switches (IPCSs) have emerged as excellent candidates for radio-frequency integrated circuit (RFIC) applications due to their state-of-the-art cutoff frequency, nonvolatility, CMOS compatibility, and exceptional linearity. However, IPCS performance is limited by relatively low-power handling capabilities in the off-state, limited by the Ovonic threshold switching (OTS) phenomenon. In this article, we propose the use of a quad configuration consisting of two series-connected IPCS in parallel with another two series-connected IPCS. This series connection increases the effective threshold voltage, thereby enhancing power handling compared to a single device. We experimentally demonstrate the implementation of this quad configuration in asymmetric and symmetric single-pole double-throw (SPDT) switches. Fabricated using an in-house process, these designs achieve an insertion loss (IL) below 0.8 dB and isolation higher than 17 dB within the dc-15 GHz frequency band. Furthermore, we explore techniques, such as reducing the probing pads and series-shunt configuration, to boost isolation beyond 30 dB. Thanks to the quad configuration, the threshold voltage increases from 5 to 13.5 V, predicatively enabling power handling above 35 dBm.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"344-349"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10753278/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Four-terminal indirectly heated phase-change switches (IPCSs) have emerged as excellent candidates for radio-frequency integrated circuit (RFIC) applications due to their state-of-the-art cutoff frequency, nonvolatility, CMOS compatibility, and exceptional linearity. However, IPCS performance is limited by relatively low-power handling capabilities in the off-state, limited by the Ovonic threshold switching (OTS) phenomenon. In this article, we propose the use of a quad configuration consisting of two series-connected IPCS in parallel with another two series-connected IPCS. This series connection increases the effective threshold voltage, thereby enhancing power handling compared to a single device. We experimentally demonstrate the implementation of this quad configuration in asymmetric and symmetric single-pole double-throw (SPDT) switches. Fabricated using an in-house process, these designs achieve an insertion loss (IL) below 0.8 dB and isolation higher than 17 dB within the dc-15 GHz frequency band. Furthermore, we explore techniques, such as reducing the probing pads and series-shunt configuration, to boost isolation beyond 30 dB. Thanks to the quad configuration, the threshold voltage increases from 5 to 13.5 V, predicatively enabling power handling above 35 dBm.
期刊介绍:
IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.