{"title":"A New Type of Bioprosthetic Heart Valve: Synergistic Modification with Anticoagulant Polysaccharides and Anti-inflammatory Drugs.","authors":"Xinyun Pu, Xu Peng, Shubin Shi, Shaoxiong Feng, Xu Wei, Xi Gao, Xixun Yu","doi":"10.1021/acsbiomaterials.4c01724","DOIUrl":null,"url":null,"abstract":"<p><p>Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs. In this study, λ-carrageenan with anticoagulant function was modified by carboxymethylation into carboxymethyl λ-carrageenan (CM-λC); subsequently, CM-λC was used as a cross-linking agent to stabilize decellularized bovine pericardial tissue through amide bonds formed by a 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide/<i>N</i>-Hydroxysuccinimide (EDC/NHS)-catalyzed reaction between the amino functional groups within pericardium and the carboxyl group located on CM-λC. Lastly, the inclusion complex (CD/Rutin) (formed by encapsulating the rutin molecule through the hydrophobic cavity of the mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin) was immobilized onto above BHVs materials (λCar-BP) through the amidation reaction. The treated sample exhibited mechanical properties and collagen stability similar to those of GA-BP, except for improved flexibility. Because of the presence of sulfonic acid groups and absence of aldehyde group as well as the Rutin release from CD/Rutin immobilized onto BHVs, the hemocompatibility, anti-inflammatory, HUVEC-cytocompatibility, and anticalcification properties, of the CM-λC-fixed BP modified with CD/Rutin was significantly better than that of GA-BP. In summary, this nonaldehyde-based natural polysaccharide cross-linking strategy utilizing the combination of CM-λC and CD/Rutin provides a novel solution to obtain BHVs with durable and stable anticoagulant, anticalcification, and anti-inflammatory properties, and has a wide range of potential applications in improving the various properties of BHVs.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c01724","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Valvular heart disease (VHD) poses a significant threat to human health, and the transcatheter heart valve replacement (THVR) is the best treatment for severe VHD. Currently, the glutaraldehyde cross-linked commercial bioprosthetic heart valves (BHVs) remain the first choice for THVR. However, the cross-linking by glutaraldehyde exhibits several drawbacks, including calcification, inflammatory reactions, and difficult endothelialization, which limits the longevity and applicability of BHVs. In this study, λ-carrageenan with anticoagulant function was modified by carboxymethylation into carboxymethyl λ-carrageenan (CM-λC); subsequently, CM-λC was used as a cross-linking agent to stabilize decellularized bovine pericardial tissue through amide bonds formed by a 1-(3-(Dimethylamino)propyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide (EDC/NHS)-catalyzed reaction between the amino functional groups within pericardium and the carboxyl group located on CM-λC. Lastly, the inclusion complex (CD/Rutin) (formed by encapsulating the rutin molecule through the hydrophobic cavity of the mono-(6-ethylenediamine-6-deoxy)-β-cyclodextrin) was immobilized onto above BHVs materials (λCar-BP) through the amidation reaction. The treated sample exhibited mechanical properties and collagen stability similar to those of GA-BP, except for improved flexibility. Because of the presence of sulfonic acid groups and absence of aldehyde group as well as the Rutin release from CD/Rutin immobilized onto BHVs, the hemocompatibility, anti-inflammatory, HUVEC-cytocompatibility, and anticalcification properties, of the CM-λC-fixed BP modified with CD/Rutin was significantly better than that of GA-BP. In summary, this nonaldehyde-based natural polysaccharide cross-linking strategy utilizing the combination of CM-λC and CD/Rutin provides a novel solution to obtain BHVs with durable and stable anticoagulant, anticalcification, and anti-inflammatory properties, and has a wide range of potential applications in improving the various properties of BHVs.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture