{"title":"Multimodal nanoenzyme-linked aptamer assay for Salmonella typhimurium based on catalysis and photothermal effect of PB@Au","authors":"Jingwen Wang, Wenxiu Liu, Zhenshuo Liu, Xiaodong Yu, Hongyan Zhang, Shuyuan Du","doi":"10.1007/s00604-024-06917-w","DOIUrl":null,"url":null,"abstract":"<div><p> A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of <i>Salmonella typhimurium</i> (<i>S. typhimurium</i>). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection. Additionally, the excellent photothermal performance of the PB@Au catalytic system was utilized for multimodal sensitive detection in the multimodal nanoenzyme-linked aptamer assay. Moreover, the utilization of both catalytic and photothermal dual-mode detection was mutually verified to enhance detection accuracy. Under optimal conditions, the detection of <i>S. typhimurium</i> in a sample can be completed in 2 h. The developed assay exhibited exceptional specificity in detecting <i>S. typhimurium,</i> with an impressive detection limit down to 23 CFU·mL<sup>−1</sup>. Furthermore, the assay exhibited excellent repeatability and stability. Real sample analyses have proven the high reliability and practicality of this assay, highlighting its significant potential for applications in food safety testing.</p></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06917-w","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A composite nanomaterial of Prussian blue@gold nanoparticles (PB@Au) with catalytic and photothermal properties was proposed, which combined with anti-matrix interference aptamers to achieve robust specificity and sensitivity in the detection of Salmonella typhimurium (S. typhimurium). The detection probe, PB@Au-Aptamer (PB@Au-Apt), was designed to exhibit high specificity for the target and catalyze the signal generation to produce a color change, thereby enabling rapid detection. Additionally, the excellent photothermal performance of the PB@Au catalytic system was utilized for multimodal sensitive detection in the multimodal nanoenzyme-linked aptamer assay. Moreover, the utilization of both catalytic and photothermal dual-mode detection was mutually verified to enhance detection accuracy. Under optimal conditions, the detection of S. typhimurium in a sample can be completed in 2 h. The developed assay exhibited exceptional specificity in detecting S. typhimurium, with an impressive detection limit down to 23 CFU·mL−1. Furthermore, the assay exhibited excellent repeatability and stability. Real sample analyses have proven the high reliability and practicality of this assay, highlighting its significant potential for applications in food safety testing.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.