Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials.

IF 5 2区 医学 Q1 PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH American journal of epidemiology Pub Date : 2024-12-26 DOI:10.1093/aje/kwae471
Luke Benz, Rajarshi Mukherjee, Rui Wang, David Arterburn, Heidi Fischer, Catherine Lee, Susan M Shortreed, Sebastien Haneuse
{"title":"Adjusting for Selection Bias Due to Missing Eligibility Criteria in Emulated Target Trials.","authors":"Luke Benz, Rajarshi Mukherjee, Rui Wang, David Arterburn, Heidi Fischer, Catherine Lee, Susan M Shortreed, Sebastien Haneuse","doi":"10.1093/aje/kwae471","DOIUrl":null,"url":null,"abstract":"<p><p>Target trial emulation (TTE) is a popular framework for observational studies based on electronic health records (EHR). A key component of this framework is determining the patient population eligible for inclusion in both a target trial of interest and its observational emulation. Missingness in variables that define eligibility criteria, however, presents a major challenge towards determining the eligible population when emulating a target trial with an observational study. In practice, patients with incomplete data are almost always excluded from analysis despite the possibility of selection bias, which can arise when subjects with observed eligibility data are fundamentally different than excluded subjects. Despite this, to the best of our knowledge, very little work has been done to mitigate this concern. In this paper, we propose a novel conceptual framework to address selection bias in TTE studies, tailored towards time-to-event endpoints, and describe estimation and inferential procedures via inverse probability weighting (IPW). Under an EHR-based simulation infrastructure, developed to reflect the complexity of EHR data, we characterize common settings under which missing eligibility data poses the threat of selection bias and investigate the ability of the proposed methods to address it. Finally, using EHR databases from Kaiser Permanente, we demonstrate the use of our method to evaluate the effect of bariatric surgery on microvascular outcomes among a cohort of severely obese patients with Type II diabetes mellitus (T2DM).</p>","PeriodicalId":7472,"journal":{"name":"American journal of epidemiology","volume":" ","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/aje/kwae471","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PUBLIC, ENVIRONMENTAL & OCCUPATIONAL HEALTH","Score":null,"Total":0}
引用次数: 0

Abstract

Target trial emulation (TTE) is a popular framework for observational studies based on electronic health records (EHR). A key component of this framework is determining the patient population eligible for inclusion in both a target trial of interest and its observational emulation. Missingness in variables that define eligibility criteria, however, presents a major challenge towards determining the eligible population when emulating a target trial with an observational study. In practice, patients with incomplete data are almost always excluded from analysis despite the possibility of selection bias, which can arise when subjects with observed eligibility data are fundamentally different than excluded subjects. Despite this, to the best of our knowledge, very little work has been done to mitigate this concern. In this paper, we propose a novel conceptual framework to address selection bias in TTE studies, tailored towards time-to-event endpoints, and describe estimation and inferential procedures via inverse probability weighting (IPW). Under an EHR-based simulation infrastructure, developed to reflect the complexity of EHR data, we characterize common settings under which missing eligibility data poses the threat of selection bias and investigate the ability of the proposed methods to address it. Finally, using EHR databases from Kaiser Permanente, we demonstrate the use of our method to evaluate the effect of bariatric surgery on microvascular outcomes among a cohort of severely obese patients with Type II diabetes mellitus (T2DM).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
American journal of epidemiology
American journal of epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
7.40
自引率
4.00%
发文量
221
审稿时长
3-6 weeks
期刊介绍: The American Journal of Epidemiology is the oldest and one of the premier epidemiologic journals devoted to the publication of empirical research findings, opinion pieces, and methodological developments in the field of epidemiologic research. It is a peer-reviewed journal aimed at both fellow epidemiologists and those who use epidemiologic data, including public health workers and clinicians.
期刊最新文献
Invited Commentary: Why use methods that require proportional hazards? Evidence Supports the Validity and Reliability of Response Times from a Brief Survey as a Digital Biomarker for Processing Speed in a Large Panel Study. Insufficient sample size or insufficient attention to marginalized populations? A practical guide to moving observational research forward. Racialized economic segregation and Black youth suicide in the US. RE: "Invited Commentary: Influence of Incomplete Death Information on Cumulative Risk Estimates in United States Claims Data".
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1