Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Cancer Biology & Medicine Pub Date : 2025-01-02 DOI:10.20892/j.issn.2095-3941.2024.0376
Luchen Chang, Jiamei Liu, Jialin Zhu, Shuyue Guo, Yao Wang, Zhiwei Zhou, Xi Wei
{"title":"Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization.","authors":"Luchen Chang, Jiamei Liu, Jialin Zhu, Shuyue Guo, Yao Wang, Zhiwei Zhou, Xi Wei","doi":"10.20892/j.issn.2095-3941.2024.0376","DOIUrl":null,"url":null,"abstract":"<p><p>Artificial intelligence (AI) is significantly advancing precision medicine, particularly in the fields of immunogenomics, radiomics, and pathomics. In immunogenomics, AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis, thus providing strong support for personalized treatments. In radiomics, AI can analyze high-dimensional features from computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) images to discover imaging biomarkers associated with tumor heterogeneity, treatment response, and disease progression, thereby enabling non-invasive, real-time assessments for personalized therapy. Pathomics leverages AI for deep analysis of digital pathology images, and can uncover subtle changes in tissue microenvironments, cellular characteristics, and morphological features, and offer unique insights into immunotherapy response prediction and biomarker discovery. These AI-driven technologies not only enhance the speed, accuracy, and robustness of biomarker discovery but also significantly improve the precision, personalization, and effectiveness of clinical treatments, and are driving a shift from empirical to precision medicine. Despite challenges such as data quality, model interpretability, integration of multi-modal data, and privacy protection, the ongoing advancements in AI, coupled with interdisciplinary collaboration, are poised to further enhance AI's roles in biomarker discovery and immunotherapy response prediction. These improvements are expected to lead to more accurate, personalized treatment strategies and ultimately better patient outcomes, marking a significant step forward in the evolution of precision medicine.</p>","PeriodicalId":9611,"journal":{"name":"Cancer Biology & Medicine","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20892/j.issn.2095-3941.2024.0376","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial intelligence (AI) is significantly advancing precision medicine, particularly in the fields of immunogenomics, radiomics, and pathomics. In immunogenomics, AI can process vast amounts of genomic and multi-omic data to identify biomarkers associated with immunotherapy responses and disease prognosis, thus providing strong support for personalized treatments. In radiomics, AI can analyze high-dimensional features from computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography/computed tomography (PET/CT) images to discover imaging biomarkers associated with tumor heterogeneity, treatment response, and disease progression, thereby enabling non-invasive, real-time assessments for personalized therapy. Pathomics leverages AI for deep analysis of digital pathology images, and can uncover subtle changes in tissue microenvironments, cellular characteristics, and morphological features, and offer unique insights into immunotherapy response prediction and biomarker discovery. These AI-driven technologies not only enhance the speed, accuracy, and robustness of biomarker discovery but also significantly improve the precision, personalization, and effectiveness of clinical treatments, and are driving a shift from empirical to precision medicine. Despite challenges such as data quality, model interpretability, integration of multi-modal data, and privacy protection, the ongoing advancements in AI, coupled with interdisciplinary collaboration, are poised to further enhance AI's roles in biomarker discovery and immunotherapy response prediction. These improvements are expected to lead to more accurate, personalized treatment strategies and ultimately better patient outcomes, marking a significant step forward in the evolution of precision medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Cancer Biology & Medicine
Cancer Biology & Medicine Medicine-Oncology
CiteScore
9.80
自引率
3.60%
发文量
1143
审稿时长
12 weeks
期刊介绍: Cancer Biology & Medicine (ISSN 2095-3941) is a peer-reviewed open-access journal of Chinese Anti-cancer Association (CACA), which is the leading professional society of oncology in China. The journal quarterly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China.
期刊最新文献
Local consolidative therapy in oligometastatic non-small-cell lung cancer after effective systemic treatment: who will benefit? Safety and efficacy of intraoperative radiation therapy using a low-energy X-ray source for resectable pancreatic cancer: an interim evaluation of an ongoing prospective phase II study. Treatment strategies for advanced neuroendocrine neoplasms: current status and future prospects. Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization. Multifaceted efforts of governments, medical institutions, and financial organizations contribute to reducing the health inequality caused by economic differences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1