{"title":"Recombinant dsAAV9-mediated Endogenous Overexpression of Macrophage Migration Inhibitory Factor Alleviates Myocardial Ischemia-Reperfusion Injury via Activating AMPK and ERK1/2 Signaling Pathways.","authors":"Xiao-Cui Chen, Min-Tao Gai, Chun-Hui He, Bang-Hao Zhao, Fen Liu, Xiang Ma, Yi-Tong Ma, Xiao-Ming Gao, Bang-Dang Chen","doi":"10.1007/s10557-024-07662-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.</p><p><strong>Methods: </strong>A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed.</p><p><strong>Results: </strong>The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway.</p><p><strong>Conclusion: </strong>Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.</p>","PeriodicalId":9557,"journal":{"name":"Cardiovascular Drugs and Therapy","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Drugs and Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10557-024-07662-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively. Infarct size, cardiac remodeling, and related signaling pathways were assessed.
Results: The dsAAV9 vector demonstrated strong transduction efficacy and cardiac affinity. Cardiac overexpression of MIF led to a 35.3% reduction in infarct size and improved cardiac function following I/R injury. In the dsAAV9-MIF group, the AMP-activated protein kinase (AMPK) signaling pathway was activated, and autophagy was enhanced during the ischemic period. During reperfusion, the extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling pathway was upregulated, leading to reduced cardiac apoptosis. In vitro, transfection with MIF in NRVMs also upregulated AMPK and ERK1/2 signaling during hypoxia and reoxygenation, respectively. Furthermore, MIF overexpression significantly improved autophagy and mitochondrial function, evidenced by an increased LC3-II/I ratio and enhanced mitochondrial membrane potential (ΔΨm), with these effects reversed by the AMPK inhibitor compound C. Additionally, MIF overexpression led to a 60% reduction in the apoptosis rate of cardiomyocytes subjected to H/R and decreased the Bax/Bcl-2 ratio, partially through the ERK1/2 signaling pathway.
Conclusion: Enhanced endogenous MIF expression via the dsAAV9 vector provides significant cardioprotection against I/R injury by activating the AMPK and ERK1/2 signaling pathways. Our findings suggest that targeting MIF may represent a viable therapeutic strategy for severe and prolonged I/R injury.
期刊介绍:
Designed to objectively cover the process of bench to bedside development of cardiovascular drug, device and cell therapy, and to bring you the information you need most in a timely and useful format, Cardiovascular Drugs and Therapy takes a fresh and energetic look at advances in this dynamic field.
Homing in on the most exciting work being done on new therapeutic agents, Cardiovascular Drugs and Therapy focusses on developments in atherosclerosis, hyperlipidemia, diabetes, ischemic syndromes and arrhythmias. The Journal is an authoritative source of current and relevant information that is indispensable for basic and clinical investigators aiming for novel, breakthrough research as well as for cardiologists seeking to best serve their patients.
Providing you with a single, concise reference tool acknowledged to be among the finest in the world, Cardiovascular Drugs and Therapy is listed in Web of Science and PubMed/Medline among other abstracting and indexing services. The regular articles and frequent special topical issues equip you with an up-to-date source defined by the need for accurate information on an ever-evolving field. Cardiovascular Drugs and Therapy is a careful and accurate guide through the maze of new products and therapies which furnishes you with the details on cardiovascular pharmacology that you will refer to time and time again.