{"title":"Identification, Biocontrol and Plant Growth Promotion Potential of Endophytic Streptomyces sp. a13.","authors":"Chingakham Juliya Devi, Kangkon Saikia, Rajkumari Mazumdar, Rictika Das, Pranami Bharadwaj, Debajit Thakur","doi":"10.1007/s00284-024-04009-9","DOIUrl":null,"url":null,"abstract":"<p><p>Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.</p>","PeriodicalId":11360,"journal":{"name":"Current Microbiology","volume":"82 2","pages":"64"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00284-024-04009-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Medicinal plants often harbour various endophytic actinomycetia, which are well known for their potent antimicrobial properties and plant growth-promoting traits. In this study, we isolated an endophytic actinomycetia, A13, from the leaves of tea clone P312 from the MEG Tea Estate, Meghalaya, India. The isolate A13 was identified as Streptomyces sp. A13 through whole genome sequencing (WGS) and 16S rRNA sequencing, showing 88% (ANI; Average Nucleotide Identity) and 99.78% sequence similarity with Streptomyces olivaceus. The strain A13 exhibited a prominent broad-spectrum antifungal activity against nine phytopathogens. It was observed that the ethyl acetate (EtAc) extract of A13 inhibits the spore germination rate of phytopathogen Nigrospora sphaerica (NSP) and also damages the fungal cell wall and cell structure. Additionally, the A13 strain exhibits several plant growth-promoting (PGP) traits, such as nitrogen fixation, ammonia production (4.7 µmol/ml), indole-acetic acid (IAA) production (8.91 µg/ml), siderophore production and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity Gas chromatography mass spectrometry (GC-MS) analysis revealed that Phenol, 3,5-bis(1,1-dimethylethyl) was found to be the major chemical constituent in the EtAc extract of the A13 strain, accounting for 50.15% of the area percentage. Whole genome sequencing and subsequent genome analysis utilizing bioinformatics techniques such as Antibiotics & Secondary Metabolite Analysis SHell (antiSMASH) and Rapid Annotation using Subsystem Technology (RAST) revealed a wide array of biologically active secondary metabolite biosynthesis gene clusters (smBGCs) with different physiologically significant roles. These findings emphasize the potential of the A13 strain as a biocontrol agent with the capability to enhance plant growth and prevent diseases.
期刊介绍:
Current Microbiology is a well-established journal that publishes articles in all aspects of microbial cells and the interactions between the microorganisms, their hosts and the environment.
Current Microbiology publishes original research articles, short communications, reviews and letters to the editor, spanning the following areas:
physiology, biochemistry, genetics, genomics, biotechnology, ecology, evolution, morphology, taxonomy, diagnostic methods, medical and clinical microbiology and immunology as applied to microorganisms.