Mareva Delporte, Laurens Lambrechts, Evy E Blomme, Willem van Snippenberg, Sofie Rutsaert, Maxime Verschoore, Evelien De Smet, Ytse Noppe, Nele De Langhe, Marie-Angélique De Scheerder, Sarah Gerlo, Linos Vandekerckhove, Wim Trypsteen
{"title":"Integrative Assessment of Total and Intact HIV-1 Reservoir by a 5-Region Multiplexed Rainbow DNA Digital PCR Assay.","authors":"Mareva Delporte, Laurens Lambrechts, Evy E Blomme, Willem van Snippenberg, Sofie Rutsaert, Maxime Verschoore, Evelien De Smet, Ytse Noppe, Nele De Langhe, Marie-Angélique De Scheerder, Sarah Gerlo, Linos Vandekerckhove, Wim Trypsteen","doi":"10.1093/clinchem/hvae192","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR). While IPDA is more sensitive due to amplifying short fragments, it may overestimate intact fractions by relying only on quantification of 2 proviral regions. Q4PCR samples 4 proviral regions, yet is sequencing-based, favoring amplification of shorter, hence non-intact, proviral sequences.</p><p><strong>Methods: </strong>Leveraging digital PCR (dPCR) advancements, we developed the \"Rainbow\" 5-plex proviral HIV-1 DNA assay. This first-in-its-kind assay was evaluated using standard materials and samples from 83 people living with HIV-1, enabling simultaneous quantification of both total and intact HIV-1 DNA levels. HIV proviral unique molecular identifier (UMI)-mediated long-read sequencing (HIV-PULSE) was used to validate the specificity of the Rainbow HIV-1 DNA assay.</p><p><strong>Results: </strong>The Rainbow assay proved equally sensitive but more specific than IPDA and is not subjected to bias against full-length proviruses, enabling high-throughput quantification of total and intact reservoir size. The near full-length sequences allowed validation of the Rainbow specificity and the design of personalized Rainbow primer/probe sets, which enabled the detection of intact HIV-1 DNA.</p><p><strong>Conclusions: </strong>This innovation offers potential for targeted evaluation and monitoring of potential rebound-competent reservoirs, contributing to HIV-1 management and cure strategies. ClinicalTrials.gov Registration Numbers: NCT04553081, NCT04305665.</p>","PeriodicalId":10690,"journal":{"name":"Clinical chemistry","volume":"71 1","pages":"203-214"},"PeriodicalIF":7.1000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/clinchem/hvae192","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Persistent latent reservoirs of intact HIV-1 proviruses, capable of rebounding despite suppressive antiretroviral therapy (ART), hinder efforts towards an HIV-1 cure. Hence, assays specifically quantifying intact proviruses are crucial to assess the impact of curative interventions. Two recent assays have been utilized in clinical trials: intact proviral DNA assay (IPDA) and quadruplex quantitative PCR (Q4PCR). While IPDA is more sensitive due to amplifying short fragments, it may overestimate intact fractions by relying only on quantification of 2 proviral regions. Q4PCR samples 4 proviral regions, yet is sequencing-based, favoring amplification of shorter, hence non-intact, proviral sequences.
Methods: Leveraging digital PCR (dPCR) advancements, we developed the "Rainbow" 5-plex proviral HIV-1 DNA assay. This first-in-its-kind assay was evaluated using standard materials and samples from 83 people living with HIV-1, enabling simultaneous quantification of both total and intact HIV-1 DNA levels. HIV proviral unique molecular identifier (UMI)-mediated long-read sequencing (HIV-PULSE) was used to validate the specificity of the Rainbow HIV-1 DNA assay.
Results: The Rainbow assay proved equally sensitive but more specific than IPDA and is not subjected to bias against full-length proviruses, enabling high-throughput quantification of total and intact reservoir size. The near full-length sequences allowed validation of the Rainbow specificity and the design of personalized Rainbow primer/probe sets, which enabled the detection of intact HIV-1 DNA.
Conclusions: This innovation offers potential for targeted evaluation and monitoring of potential rebound-competent reservoirs, contributing to HIV-1 management and cure strategies. ClinicalTrials.gov Registration Numbers: NCT04553081, NCT04305665.
期刊介绍:
Clinical Chemistry is a peer-reviewed scientific journal that is the premier publication for the science and practice of clinical laboratory medicine. It was established in 1955 and is associated with the Association for Diagnostics & Laboratory Medicine (ADLM).
The journal focuses on laboratory diagnosis and management of patients, and has expanded to include other clinical laboratory disciplines such as genomics, hematology, microbiology, and toxicology. It also publishes articles relevant to clinical specialties including cardiology, endocrinology, gastroenterology, genetics, immunology, infectious diseases, maternal-fetal medicine, neurology, nutrition, oncology, and pediatrics.
In addition to original research, editorials, and reviews, Clinical Chemistry features recurring sections such as clinical case studies, perspectives, podcasts, and Q&A articles. It has the highest impact factor among journals of clinical chemistry, laboratory medicine, pathology, analytical chemistry, transfusion medicine, and clinical microbiology.
The journal is indexed in databases such as MEDLINE and Web of Science.