AQbD integrated high-performance thin layer chromatographic method for quantitative estimation of Tavaborole in the presence of its degradants and the matrix of nanostructured lipid carriers.
{"title":"AQbD integrated high-performance thin layer chromatographic method for quantitative estimation of Tavaborole in the presence of its degradants and the matrix of nanostructured lipid carriers.","authors":"Rashmin Patel, Savaliya Neel, Patel Mrunali, Yash Patel, Richa Dave, Agrawal Vikas","doi":"10.1080/03639045.2024.2449148","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.</p><p><strong>Objective: </strong>This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.</p><p><strong>Methods: </strong>The critical method parameters influencing the HPTLC results were screened using a Plackett-Burman screening design followed by its optimization using a central composite optimization design. The developed method was validated as per ICH recommendation.</p><p><strong>Results: </strong>Optimized method utilized pre-coated aluminum-backed HPTLC plates using 10 µL/band injection volume, and the plate was developed using an isocratic mobile phase consisting of toluene: ethyl acetate: formic acid (75:25:1%v/v/v) in twin trough chamber pre-saturated for 20 mins with vapors of 10 mL of mobile phase. The separated components were detected at a wavelength of 221 nm. The developed HPTLC method resulted in a retardation factor of 0.49 ± 0.04 for TAV. Validation results revealed the HPTLC method's specificity (peak purity ≥ 0.999), linearity over a concentration range of 2-10 μg/band, sensitivity (LOD 0.21 μg and LOQ 0.64 μg), accuracy (99.68 - 101.43%w/w), and precision (%RSD < 2.0).</p><p><strong>Conclusion: </strong>The developed robust stability-indicating HPTLC method was successfully implemented for the sustainable testing of the TAV in the NLC formulations and stability testing.</p>","PeriodicalId":11263,"journal":{"name":"Drug Development and Industrial Pharmacy","volume":" ","pages":"1-12"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development and Industrial Pharmacy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/03639045.2024.2449148","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.
Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.
Methods: The critical method parameters influencing the HPTLC results were screened using a Plackett-Burman screening design followed by its optimization using a central composite optimization design. The developed method was validated as per ICH recommendation.
Results: Optimized method utilized pre-coated aluminum-backed HPTLC plates using 10 µL/band injection volume, and the plate was developed using an isocratic mobile phase consisting of toluene: ethyl acetate: formic acid (75:25:1%v/v/v) in twin trough chamber pre-saturated for 20 mins with vapors of 10 mL of mobile phase. The separated components were detected at a wavelength of 221 nm. The developed HPTLC method resulted in a retardation factor of 0.49 ± 0.04 for TAV. Validation results revealed the HPTLC method's specificity (peak purity ≥ 0.999), linearity over a concentration range of 2-10 μg/band, sensitivity (LOD 0.21 μg and LOQ 0.64 μg), accuracy (99.68 - 101.43%w/w), and precision (%RSD < 2.0).
Conclusion: The developed robust stability-indicating HPTLC method was successfully implemented for the sustainable testing of the TAV in the NLC formulations and stability testing.
期刊介绍:
The aim of Drug Development and Industrial Pharmacy is to publish novel, original, peer-reviewed research manuscripts within relevant topics and research methods related to pharmaceutical research and development, and industrial pharmacy. Research papers must be hypothesis driven and emphasize innovative breakthrough topics in pharmaceutics and drug delivery. The journal will also consider timely critical review papers.