Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank.

IF 1.7 4区 医学 Q3 GENETICS & HEREDITY Genetic Epidemiology Pub Date : 2025-01-01 DOI:10.1002/gepi.22609
Naomi Wilcox, Jonathan P Tyrer, Joe Dennis, Xin Yang, John R B Perry, Eugene J Gardner, Douglas F Easton
{"title":"Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank.","authors":"Naomi Wilcox, Jonathan P Tyrer, Joe Dennis, Xin Yang, John R B Perry, Eugene J Gardner, Douglas F Easton","doi":"10.1002/gepi.22609","DOIUrl":null,"url":null,"abstract":"<p><p>In large cohort studies the number of unaffected individuals outnumbers the number of affected individuals, and the power can be low to detect associations for outcomes with low prevalence. We consider how including recorded family history in regression models increases the power to detect associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo simulations that including a family history of the disease, with a weighting of 0.5 compared with true cases, increases the power to detect associations. This is a powerful approach for detecting variants with moderate effects, but for larger effect sizes a weighting of > 0.5 can be more powerful. We illustrate this both for common variants and for exome sequencing data for over 400,000 individuals in UK Biobank to evaluate the association between the burden of protein-truncating variants in genes and risk for four cancer types.</p>","PeriodicalId":12710,"journal":{"name":"Genetic Epidemiology","volume":"49 1","pages":"e22609"},"PeriodicalIF":1.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetic Epidemiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/gepi.22609","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

In large cohort studies the number of unaffected individuals outnumbers the number of affected individuals, and the power can be low to detect associations for outcomes with low prevalence. We consider how including recorded family history in regression models increases the power to detect associations between genetic variants and disease risk. We show theoretically and using Monte-Carlo simulations that including a family history of the disease, with a weighting of 0.5 compared with true cases, increases the power to detect associations. This is a powerful approach for detecting variants with moderate effects, but for larger effect sizes a weighting of > 0.5 can be more powerful. We illustrate this both for common variants and for exome sequencing data for over 400,000 individuals in UK Biobank to evaluate the association between the burden of protein-truncating variants in genes and risk for four cancer types.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Genetic Epidemiology
Genetic Epidemiology 医学-公共卫生、环境卫生与职业卫生
CiteScore
4.40
自引率
9.50%
发文量
49
审稿时长
6-12 weeks
期刊介绍: Genetic Epidemiology is a peer-reviewed journal for discussion of research on the genetic causes of the distribution of human traits in families and populations. Emphasis is placed on the relative contribution of genetic and environmental factors to human disease as revealed by genetic, epidemiological, and biologic investigations. Genetic Epidemiology primarily publishes papers in statistical genetics, a research field that is primarily concerned with development of statistical, bioinformatical, and computational models for analyzing genetic data. Incorporation of underlying biology and population genetics into conceptual models is favored. The Journal seeks original articles comprising either applied research or innovative statistical, mathematical, computational, or genomic methodologies that advance studies in genetic epidemiology. Other types of reports are encouraged, such as letters to the editor, topic reviews, and perspectives from other fields of research that will likely enrich the field of genetic epidemiology.
期刊最新文献
Genetic Associations of Persistent Opioid Use After Surgery Point to OPRM1 but Not Other Opioid-Related Loci as the Main Driver of Opioid Use Disorder. Bayesian Effect Size Ranking to Prioritise Genetic Risk Variants in Common Diseases for Follow-Up Studies. Using Family History Data to Improve the Power of Association Studies: Application to Cancer in UK Biobank. Issue Information Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1