A long noncoding RNA with enhancer-like function in pig zygotic genome activation.

IF 5.3 2区 生物学 Q2 CELL BIOLOGY Journal of Molecular Cell Biology Pub Date : 2025-01-02 DOI:10.1093/jmcb/mjae061
Renyue Wei, Yanbin Yue, Yinhuan Wu, Chenyuan Zhang, Junxue Jin, Zhonghua Liu, Jiaqiang Wang
{"title":"A long noncoding RNA with enhancer-like function in pig zygotic genome activation.","authors":"Renyue Wei, Yanbin Yue, Yinhuan Wu, Chenyuan Zhang, Junxue Jin, Zhonghua Liu, Jiaqiang Wang","doi":"10.1093/jmcb/mjae061","DOIUrl":null,"url":null,"abstract":"<p><p>The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development. LncFKBPL is expressed from the 4-cell stage to the morula stage in pig embryos, and interference with lncFKBPL leads to a developmental arrest at the 8-cell stage. Mechanistic investigations uncover that lncFKBPL is able to bind to MED8, thereby mediating enhancer activity and regulating FKBPL expression. Additionally, FKBPL interacts with the molecular chaperone protein HSP90AA1, stabilizing CDK9 and boosting its protein-level expression. Elevated CDK9 levels enhance Pol II phosphorylation, facilitating ZGA. Our findings illuminate the role of lncFKBPL as an enhancer lncRNA in pig ZGA regulation and early embryo development, providing a foundation for further exploration in this area.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjae061","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The zygotic genome activation (ZGA) is crucial for the development of pre-implantation embryos. Long noncoding RNAs (lncRNAs) play significant roles in many biological processes, but the study on their role in the early embryonic development of pigs is limited. In this study, we identify lncFKBPL as an enhancer-type lncRNA essential for pig embryo development. LncFKBPL is expressed from the 4-cell stage to the morula stage in pig embryos, and interference with lncFKBPL leads to a developmental arrest at the 8-cell stage. Mechanistic investigations uncover that lncFKBPL is able to bind to MED8, thereby mediating enhancer activity and regulating FKBPL expression. Additionally, FKBPL interacts with the molecular chaperone protein HSP90AA1, stabilizing CDK9 and boosting its protein-level expression. Elevated CDK9 levels enhance Pol II phosphorylation, facilitating ZGA. Our findings illuminate the role of lncFKBPL as an enhancer lncRNA in pig ZGA regulation and early embryo development, providing a foundation for further exploration in this area.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
猪受精卵基因组激活中一种具有增强子样功能的长链非编码RNA。
合子基因组激活(zygotic genome activation, ZGA)是胚胎着床前发育的关键。长链非编码rna (lncRNAs)在许多生物学过程中发挥着重要作用,但对其在猪早期胚胎发育中的作用的研究有限。在这项研究中,我们发现lncFKBPL是猪胚胎发育所必需的增强型lncRNA。LncFKBPL在猪胚胎的4细胞期到森胚期都有表达,干扰LncFKBPL会导致8细胞期发育停滞。机制研究发现lncFKBPL能够与MED8结合,从而介导增强子活性并调节FKBPL的表达。此外,FKBPL与分子伴侣蛋白HSP90AA1相互作用,稳定CDK9并促进其蛋白水平表达。CDK9水平升高可增强Pol II磷酸化,促进ZGA。我们的研究结果阐明了lncFKBPL作为一种增强lncRNA在猪ZGA调控和早期胚胎发育中的作用,为该领域的进一步探索提供了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
期刊最新文献
A polarized multicomponent foundation upholds ciliary central microtubules. Correction to: Mitochondrial aldehyde dehydrogenase rescues against diabetic cardiomyopathy through GSK3β-mediated preservation of mitochondrial integrity and Parkin-mediated mitophagy. A look back at the departmental Virology Days of the Institut Pasteur (Le Touquet, May 13-15, 2024). Low-dose quinine targets KCNH6 to potentiate glucose-induced insulin secretion. Early differentiation of committed erythroid cells defined by miR-144/451 expression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1