A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma.

IF 4.4 Q1 PATHOLOGY PATHOLOGICA Pub Date : 2024-12-01 DOI:10.32074/1591-951X-1027
Silvia Varricchio, Gennaro Ilardi, Angela Crispino, Marco Pietro D'Angelo, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla
{"title":"A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma.","authors":"Silvia Varricchio, Gennaro Ilardi, Angela Crispino, Marco Pietro D'Angelo, Daniela Russo, Rosa Maria Di Crescenzo, Stefania Staibano, Francesco Merolla","doi":"10.32074/1591-951X-1027","DOIUrl":null,"url":null,"abstract":"<p><p>HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression of the P16<sup>INK4a</sup> protein, which must be associated with molecular investigation for the presence of viral DNA. We aim to define a criterion based on image analysis and machine learning to predict HPV status from hematoxylin/eosin stain.</p><p><p>We extracted a pool of 41 morphometric and colorimetric features from each tumor cell identified from two different cohorts of tumor tissues obtained from the Cancer Genome Atlas and the archives of the Pathological Anatomy of Federico II of Naples. On this data, we built a random Forest classifier. Our model showed a 90% accuracy. We also studied the variable importance to define a criterion useful for the explainability of the model. Prediction of the molecular state of a neoplastic cell based on digitally extracted morphometric features is fascinating and promises to revolutionize histopathology. We have built a classifier capable of anticipating the result of p16-immunohistochemistry and molecular test to assess the HPV status of squamous carcinomas of the oropharynx by analyzing the hematoxylin/eosin staining.</p>","PeriodicalId":45893,"journal":{"name":"PATHOLOGICA","volume":"116 6","pages":"379-389"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATHOLOGICA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32074/1591-951X-1027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

HPV status is an important prognostic factor in oropharyngeal squamous cell carcinoma (OPSCC), with HPV-positive tumors associated with better overall survival. To determine HPV status, we rely on the immunohistochemical investigation for expression of the P16INK4a protein, which must be associated with molecular investigation for the presence of viral DNA. We aim to define a criterion based on image analysis and machine learning to predict HPV status from hematoxylin/eosin stain.

We extracted a pool of 41 morphometric and colorimetric features from each tumor cell identified from two different cohorts of tumor tissues obtained from the Cancer Genome Atlas and the archives of the Pathological Anatomy of Federico II of Naples. On this data, we built a random Forest classifier. Our model showed a 90% accuracy. We also studied the variable importance to define a criterion useful for the explainability of the model. Prediction of the molecular state of a neoplastic cell based on digitally extracted morphometric features is fascinating and promises to revolutionize histopathology. We have built a classifier capable of anticipating the result of p16-immunohistochemistry and molecular test to assess the HPV status of squamous carcinomas of the oropharynx by analyzing the hematoxylin/eosin staining.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测口咽鳞状细胞癌HPV阳性的机器学习方法。
HPV状态是口咽鳞状细胞癌(OPSCC)的重要预后因素,HPV阳性肿瘤与更好的总生存率相关。为了确定HPV状态,我们依赖于P16INK4a蛋白表达的免疫组织化学研究,这必须与病毒DNA存在的分子研究相关联。我们的目标是定义一个基于图像分析和机器学习的标准来预测苏木精/伊红染色的HPV状态。我们从癌症基因组图谱和那不勒斯费德里科二世病理解剖档案中获得的两个不同队列的肿瘤组织中鉴定的每个肿瘤细胞中提取了41个形态和比色特征。基于这些数据,我们构建了一个随机森林分类器。我们的模型显示出90%的准确率。我们还研究了变量的重要性,以定义一个对模型的可解释性有用的标准。基于数字提取的形态特征来预测肿瘤细胞的分子状态是很有吸引力的,并且有望彻底改变组织病理学。我们建立了一个能够预测p16免疫组织化学和分子检测结果的分类器,通过分析苏木精/伊红染色来评估口咽部鳞状癌的HPV状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
PATHOLOGICA
PATHOLOGICA PATHOLOGY-
CiteScore
5.90
自引率
5.70%
发文量
108
期刊最新文献
Metformin radiosensitizes OSCC in 2D and 3D models: possible involvement of CAF-1. The oral microbiome and its role in oral squamous cell carcinoma: a systematic review of microbial alterations and potential biomarkers. A Digital Workflow for Automated Assessment of Tumor-Infiltrating Lymphocytes in Oral Squamous Cell Carcinoma Using QuPath and a StarDist-Based Model. A machine learning approach to predict HPV positivity of oropharyngeal squamous cell carcinoma. DNA methylation analysis from oral brushing reveals a field cancerization effect in proliferative verrucous leukoplakia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1