Emergence of categorical representations in parietal and ventromedial prefrontal cortex across extended training.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-01-02 DOI:10.1523/JNEUROSCI.1315-24.2024
Zhiya Liu, Yitao Zhang, Chudan Wen, Jingzhao Yuan, Jingxian Zhang, Carol A Seger
{"title":"Emergence of categorical representations in parietal and ventromedial prefrontal cortex across extended training.","authors":"Zhiya Liu, Yitao Zhang, Chudan Wen, Jingzhao Yuan, Jingxian Zhang, Carol A Seger","doi":"10.1523/JNEUROSCI.1315-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>How do the neural representations underlying category learning change as skill develops? We examined perceptual category learning using a prototype learning task known to recruit a corticostriatal system including the posterior striatum, motor cortex, visual cortex, and the intraparietal sulcus (IPS). Male and female human participants practiced categorizing stimuli as category members or nonmembers (A versus not-A) across three days, with fMRI data collected at the beginning and end. Univariate analyses found that corticostriatal activity in regions associated with habitual instrumental learning were recruited across both sessions, but activity in regions associated with goal-directed instrumental learning decreased from day 1 to day 3. Multivoxel Pattern Analysis (MVPA) indicated that after training the trained category could be more easily decoded from the IPS when compared with a novel category. Representational Similarity Analysis (RSA) showed development of category representations in IPS and motor cortex. In addition, RSA revealed evidence for category-related representations including prototype representation in the ventromedial prefrontal cortex which may reflect parallel development of schematic memory for the category structure. Overall, the results converge to show how performance of category decisions and representations of the category structure emerge after extensive training across the corticostriatal system underlying perceptual category learning.<b>Significance Statement</b> We compared activity during initial category learning with that after an extended training session and used multivariate methods to characterize representational changes. We found that representations changed in the intraparietal sulcus (IPS) and ventromedial prefrontal cortex (VMPFC). The IPS became sensitive to category membership and distinguished between the trained category and a novel category. The VMPFC showed sensitivity to the prototype as well as other category-related features. In addition, motor cortex coded for category membership decisions and making associated motor responses. Overall our results go beyond previous research that established what brain regions are recruited during the initial phases of perceptual category learning to characterize how category representations emerge as participants become highly skilled.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1315-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

How do the neural representations underlying category learning change as skill develops? We examined perceptual category learning using a prototype learning task known to recruit a corticostriatal system including the posterior striatum, motor cortex, visual cortex, and the intraparietal sulcus (IPS). Male and female human participants practiced categorizing stimuli as category members or nonmembers (A versus not-A) across three days, with fMRI data collected at the beginning and end. Univariate analyses found that corticostriatal activity in regions associated with habitual instrumental learning were recruited across both sessions, but activity in regions associated with goal-directed instrumental learning decreased from day 1 to day 3. Multivoxel Pattern Analysis (MVPA) indicated that after training the trained category could be more easily decoded from the IPS when compared with a novel category. Representational Similarity Analysis (RSA) showed development of category representations in IPS and motor cortex. In addition, RSA revealed evidence for category-related representations including prototype representation in the ventromedial prefrontal cortex which may reflect parallel development of schematic memory for the category structure. Overall, the results converge to show how performance of category decisions and representations of the category structure emerge after extensive training across the corticostriatal system underlying perceptual category learning.Significance Statement We compared activity during initial category learning with that after an extended training session and used multivariate methods to characterize representational changes. We found that representations changed in the intraparietal sulcus (IPS) and ventromedial prefrontal cortex (VMPFC). The IPS became sensitive to category membership and distinguished between the trained category and a novel category. The VMPFC showed sensitivity to the prototype as well as other category-related features. In addition, motor cortex coded for category membership decisions and making associated motor responses. Overall our results go beyond previous research that established what brain regions are recruited during the initial phases of perceptual category learning to characterize how category representations emerge as participants become highly skilled.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
顶叶和腹内侧前额叶皮层在扩展训练中出现的分类表征
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Microvascular dysfunction, mitochondrial reprogramming, and inflammasome activation as critical regulators of ischemic stroke severity induced by chronic exposure to prescription opioids. Neural correlates of perceptual plasticity in the auditory midbrain and thalamus. Synaptic Vesicle glycoprotein 2A knockout in parvalbumin and somatostatin interneurons drives seizures in the postnatal mouse brain. Adolescent cerebellar nuclei manipulation alters reversal learning and perineuronal net intensity independently in male and female mice. Compromising tyrosine hydroxylase function extends and blunts the temporal profile of reinforcement by dopamine neurons in Drosophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1