Event-based sliding mode control for singularly perturbed systems with switching parameters.

Changchun Shen, Jun Cheng
{"title":"Event-based sliding mode control for singularly perturbed systems with switching parameters.","authors":"Changchun Shen, Jun Cheng","doi":"10.1016/j.isatra.2024.12.036","DOIUrl":null,"url":null,"abstract":"<p><p>This paper addresses the event-based sliding mode control problem for singularly perturbed systems with switching parameters. Unlike traditional Markovian switching systems, singularly perturbed S-MSSs allow more flexible state transitions, which can be described by a general distribution rather than the exponential distribution assumed in Markovian switching systems. To enhance the performance of such systems, a novel memory-based dynamic event-triggered protocol (DETP) is proposed, incorporating a memory term for the auxiliary offset variable. This approach reduces the frequency of communication packets, leading to more efficient transmission scheduling. The proposed memory-based DETP distinguishes itself by utilizing both the memory term and the singular perturbation parameter, effectively mitigating communication overhead while maintaining control performance. In addition, an innovative integral-type sliding surface is constructed, and a hidden semi-Markovian switching model is employed to address mode mismatches between the original system and the sliding mode control law. Using parameter-dependent Lyapunov theory, several sufficient conditions are derived to guarantee the exponential mode stability under bounded disturbances (EMSUB) behavior of the sliding mode dynamics. Finally, the effectiveness of the proposed control strategy is demonstrated through two simulation examples.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.12.036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper addresses the event-based sliding mode control problem for singularly perturbed systems with switching parameters. Unlike traditional Markovian switching systems, singularly perturbed S-MSSs allow more flexible state transitions, which can be described by a general distribution rather than the exponential distribution assumed in Markovian switching systems. To enhance the performance of such systems, a novel memory-based dynamic event-triggered protocol (DETP) is proposed, incorporating a memory term for the auxiliary offset variable. This approach reduces the frequency of communication packets, leading to more efficient transmission scheduling. The proposed memory-based DETP distinguishes itself by utilizing both the memory term and the singular perturbation parameter, effectively mitigating communication overhead while maintaining control performance. In addition, an innovative integral-type sliding surface is constructed, and a hidden semi-Markovian switching model is employed to address mode mismatches between the original system and the sliding mode control law. Using parameter-dependent Lyapunov theory, several sufficient conditions are derived to guarantee the exponential mode stability under bounded disturbances (EMSUB) behavior of the sliding mode dynamics. Finally, the effectiveness of the proposed control strategy is demonstrated through two simulation examples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visualized neural network-based vibration control for pigeon-like flexible flapping wings. Harnessing unlabeled data: Enhanced rare earth component content prediction based on BiLSTM-Deep autoencoder. A new sensor-less voltage and frequency control of stand-alone DFIG based dead-beat direct-rotor flux control-experimental validation. Event-based sliding mode control for singularly perturbed systems with switching parameters. Frequency-domain-based nonlinear normalized iterative learning control for three-dimensional ball screw drive systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1