Melanin concentrating hormone projections to the nucleus accumbens enhance the reward value of food consumption and do not induce feeding or REM sleep.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2025-01-02 DOI:10.1523/JNEUROSCI.1725-24.2024
Katherine L Furman, Lorelei Baron, Hannah C Lyons, Timothy Cha, Jack R Evans, Jayeeta Manna, Limei Zhu, Joanna Mattis, Christian R Burgess
{"title":"Melanin concentrating hormone projections to the nucleus accumbens enhance the reward value of food consumption and do not induce feeding or REM sleep.","authors":"Katherine L Furman, Lorelei Baron, Hannah C Lyons, Timothy Cha, Jack R Evans, Jayeeta Manna, Limei Zhu, Joanna Mattis, Christian R Burgess","doi":"10.1523/JNEUROSCI.1725-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit. When dysregulated, non-homeostatic drives to consume can contribute to disorders of food intake, adding to the increasing prevalence of restrictive eating disorders and obesity. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of feeding behavior, in addition to a number of other fundamental behaviors including sleep, anxiety, and maternal behavior. Several studies suggest that MCH peptide increases food consumption, while studies of MCH neurons show effects only on cued feeding, and others show no effect of MCH neuron manipulation on feeding. MCH neurons have widespread projections to diverse downstream brain regions yet few studies have investigated the function of specific projections or differentiated the behaviors they regulate. Here we use optogenetics, in combination with different behavioral paradigms, to elucidate the role of MCH projections to the nucleus accumbens (NAc) in sleep and feeding behavior. We show that MCH neurons projecting to the NAc do not induce changes in baseline feeding or REM sleep, but do enhance the preference for a food paired with optogenetic stimulation. Furthermore, this effect is diminished in female mice relative to males, in line with previous results suggesting sex differences in the functional role of MCH neurons. These results suggest that MCH projections to the NAc can enhance the rewarding value of consumed food.<b>Significance Statement</b> While feeding is often driven by hunger, there are non-homeostatic reasons why animals consume food. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of many fundamental behaviors, including feeding, sleep and reward. They project broadly throughout the brain, suggesting that they may mediate this diverse set of behaviors independently via specific projections to downstream regions. We used optogenetic activation of MCH neurons and their projections to the nucleus accumbens (NAc) in combination with complex behavioral paradigms to demonstrate that MCH projections to the NAc do not induce baseline feeding or increases in REM sleep but do enhance the value of a paired food. These results suggest that MCH neurons contribute to non-homeostatic consumption via projections to the NAc.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.1725-24.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit. When dysregulated, non-homeostatic drives to consume can contribute to disorders of food intake, adding to the increasing prevalence of restrictive eating disorders and obesity. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of feeding behavior, in addition to a number of other fundamental behaviors including sleep, anxiety, and maternal behavior. Several studies suggest that MCH peptide increases food consumption, while studies of MCH neurons show effects only on cued feeding, and others show no effect of MCH neuron manipulation on feeding. MCH neurons have widespread projections to diverse downstream brain regions yet few studies have investigated the function of specific projections or differentiated the behaviors they regulate. Here we use optogenetics, in combination with different behavioral paradigms, to elucidate the role of MCH projections to the nucleus accumbens (NAc) in sleep and feeding behavior. We show that MCH neurons projecting to the NAc do not induce changes in baseline feeding or REM sleep, but do enhance the preference for a food paired with optogenetic stimulation. Furthermore, this effect is diminished in female mice relative to males, in line with previous results suggesting sex differences in the functional role of MCH neurons. These results suggest that MCH projections to the NAc can enhance the rewarding value of consumed food.Significance Statement While feeding is often driven by hunger, there are non-homeostatic reasons why animals consume food. Melanin-concentrating hormone (MCH) neurons have been implicated in the regulation of many fundamental behaviors, including feeding, sleep and reward. They project broadly throughout the brain, suggesting that they may mediate this diverse set of behaviors independently via specific projections to downstream regions. We used optogenetic activation of MCH neurons and their projections to the nucleus accumbens (NAc) in combination with complex behavioral paradigms to demonstrate that MCH projections to the NAc do not induce baseline feeding or increases in REM sleep but do enhance the value of a paired food. These results suggest that MCH neurons contribute to non-homeostatic consumption via projections to the NAc.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
黑色素浓缩激素投射到伏隔核会提高食物消费的奖赏价值,但不会诱发进食或快速眼动睡眠。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Microvascular dysfunction, mitochondrial reprogramming, and inflammasome activation as critical regulators of ischemic stroke severity induced by chronic exposure to prescription opioids. Neural correlates of perceptual plasticity in the auditory midbrain and thalamus. Synaptic Vesicle glycoprotein 2A knockout in parvalbumin and somatostatin interneurons drives seizures in the postnatal mouse brain. Adolescent cerebellar nuclei manipulation alters reversal learning and perineuronal net intensity independently in male and female mice. Compromising tyrosine hydroxylase function extends and blunts the temporal profile of reinforcement by dopamine neurons in Drosophila.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1