Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy.

Ran Hao, Meng Jiao, Xingguo Xu, Di Wu, Haiying Wei, Leyong Zeng
{"title":"Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy.","authors":"Ran Hao, Meng Jiao, Xingguo Xu, Di Wu, Haiying Wei, Leyong Zeng","doi":"10.1039/d4tb02056a","DOIUrl":null,"url":null,"abstract":"<p><p>Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release. This approach effectively avoided the non-specific leakage of CPT and enabled the combination of photothermal therapy (PTT) and chemotherapy. In the simulated tumor microenvironment (pH = 5.5), the TSL shell prevented CPT leakage at 37 °C, with a release rate of only 11.4%. However, the release rate of CPT greatly increased to 85.4% when the temperature was elevated to 45 °C. The photothermal conversion efficiency of AuNCs/CPT@TSL reached up to 46.1%. At an incubation temperature of 37 °C, the cell survival rate decreased to 43.6% in AuNCs/CPT but remained above 90% in AuNCs/CPT@TSL, demonstrating the protective effect of the TSL shell. Under the combination of PTT and chemotherapy, cell viability drastically decreased to 10.9%, and the tumors completely disappeared, confirming the safe and reliable antitumor effect of AuNCs/CPT@TSL.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d4tb02056a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release. This approach effectively avoided the non-specific leakage of CPT and enabled the combination of photothermal therapy (PTT) and chemotherapy. In the simulated tumor microenvironment (pH = 5.5), the TSL shell prevented CPT leakage at 37 °C, with a release rate of only 11.4%. However, the release rate of CPT greatly increased to 85.4% when the temperature was elevated to 45 °C. The photothermal conversion efficiency of AuNCs/CPT@TSL reached up to 46.1%. At an incubation temperature of 37 °C, the cell survival rate decreased to 43.6% in AuNCs/CPT but remained above 90% in AuNCs/CPT@TSL, demonstrating the protective effect of the TSL shell. Under the combination of PTT and chemotherapy, cell viability drastically decreased to 10.9%, and the tumors completely disappeared, confirming the safe and reliable antitumor effect of AuNCs/CPT@TSL.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Advances in nanozymes with peroxidase-like activity for biosensing and disease therapy applications. Enhanced undecylprodigiosin production using collagen hydrolysate: a cost-effective and high-efficiency synthesis strategy. Hydrogen-bonded multi-mode liquid crystal elastomer actuators. Thermosensitive liposome-encapsulated gold nanocages for photothermal-modulated drug release and synergistic photothermal therapy. A multifunctional metal-based nanozyme for CT/PTI-guided photothermal/starvation/chemodynamic therapy against colon tumor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1