Analysis of Floral Sources of a Local Honey Used in Clinical Treatment of Topical Community Acquired Methicillin Resistant Staphylococcus Aureus.

New Mexico journal of science Pub Date : 2023-01-01
Don Hyder, Eric Miller, Stephen Rankin, Danielle Turner, Snezna Rogelj, Rodolfo Tello-Aburto, Desiree Smiley, Bryden Baker, Holly Vandeever, Hunter Esmiol, Russell Begay, Jonathan Barajas, Sergio Martinez
{"title":"Analysis of Floral Sources of a Local Honey Used in Clinical Treatment of Topical Community Acquired Methicillin Resistant <i>Staphylococcus Aureus</i>.","authors":"Don Hyder, Eric Miller, Stephen Rankin, Danielle Turner, Snezna Rogelj, Rodolfo Tello-Aburto, Desiree Smiley, Bryden Baker, Holly Vandeever, Hunter Esmiol, Russell Begay, Jonathan Barajas, Sergio Martinez","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>A study was initiated during the summers of 2015-2019 to characterize the floral and chemical components in a local honey (clinical honey) that was being used in a Food and Drug Administration (FDA) approved clinical study designed to evaluate effectiveness in controlling topical community acquired methicillin resistant <i>Staphylococcus aureus</i> (caMRSA) infections. Floral sources were determined by collecting nectar and pollen from plants visited by bees within the area where the local honey is being produced (Study Area). Pollen characteristics were determined by using both light microscopy (LM) and scanning electron microscopy (SEM). This information was compared to pollen collected by a pollen trap on hives within the study area. The nectars and the medical honey were analyzed for biologically active compounds using Solid Phase Micro Extraction (SPME) and Gas Chromatography-Mass Spectrometry (GC-MS). This equipment allows a researcher to extract, separate, and identify chemical components of a honey or nectar sample. Fourteen biologically active compounds were identified from the eighteen floral sources and the clinical honey. Nine of the fourteen compounds were selected for standard minimum inhibitory concentration (MIC) antibacterial assay using CAMRSA ATCC BAA-44 strain. Phenylethyl alcohol and phenylacetaldehyde were the only compounds exhibiting promising activity against caMRSA. Both exhibited bacteriostatic activity. A variety of antibiotic compounds were unique to clinical honey. This suggests that the various nectars provide a large chemical base for antibiotic compounds.</p>","PeriodicalId":74302,"journal":{"name":"New Mexico journal of science","volume":"57 ","pages":"50-63"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11695059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Mexico journal of science","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A study was initiated during the summers of 2015-2019 to characterize the floral and chemical components in a local honey (clinical honey) that was being used in a Food and Drug Administration (FDA) approved clinical study designed to evaluate effectiveness in controlling topical community acquired methicillin resistant Staphylococcus aureus (caMRSA) infections. Floral sources were determined by collecting nectar and pollen from plants visited by bees within the area where the local honey is being produced (Study Area). Pollen characteristics were determined by using both light microscopy (LM) and scanning electron microscopy (SEM). This information was compared to pollen collected by a pollen trap on hives within the study area. The nectars and the medical honey were analyzed for biologically active compounds using Solid Phase Micro Extraction (SPME) and Gas Chromatography-Mass Spectrometry (GC-MS). This equipment allows a researcher to extract, separate, and identify chemical components of a honey or nectar sample. Fourteen biologically active compounds were identified from the eighteen floral sources and the clinical honey. Nine of the fourteen compounds were selected for standard minimum inhibitory concentration (MIC) antibacterial assay using CAMRSA ATCC BAA-44 strain. Phenylethyl alcohol and phenylacetaldehyde were the only compounds exhibiting promising activity against caMRSA. Both exhibited bacteriostatic activity. A variety of antibiotic compounds were unique to clinical honey. This suggests that the various nectars provide a large chemical base for antibiotic compounds.

分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Floral Sources of a Local Honey Used in Clinical Treatment of Topical Community Acquired Methicillin Resistant Staphylococcus Aureus. Efficient Protocol for Expression and Purification of DUSP5.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1