Expanding towards contraction: the alternation of floods and droughts as a fundamental component in river ecology

IF 3.9 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Biogeochemistry Pub Date : 2025-01-03 DOI:10.1007/s10533-024-01197-1
S. Bernal, J. L. J. Ledesma, X. Peñarroya, C. Jativa, N. Catalán, E. O. Casamayor, A. Lupon, R. Marcé, E. Martí, X. Triadó-Margarit, G. Rocher-Ros
{"title":"Expanding towards contraction: the alternation of floods and droughts as a fundamental component in river ecology","authors":"S. Bernal,&nbsp;J. L. J. Ledesma,&nbsp;X. Peñarroya,&nbsp;C. Jativa,&nbsp;N. Catalán,&nbsp;E. O. Casamayor,&nbsp;A. Lupon,&nbsp;R. Marcé,&nbsp;E. Martí,&nbsp;X. Triadó-Margarit,&nbsp;G. Rocher-Ros","doi":"10.1007/s10533-024-01197-1","DOIUrl":null,"url":null,"abstract":"<div><p>Climate warming is causing more extreme weather conditions, with both larger and more intense precipitation events as well as extended periods of drought in many regions of the world. The consequence is an alteration of the hydrological regime of streams and rivers, with an increase in the probability of extreme hydrological conditions. Mediterranean-climate regions usually experience extreme hydrological events on a seasonal basis and thus, freshwater Mediterranean ecosystems can be used as natural laboratories for better understanding how climate warming will impact ecosystem structure and functioning elsewhere. In this paper, we revisited and contextualized historical and new datasets collected at Fuirosos, a well-studied Mediterranean intermittent stream naturally experiencing extreme hydrological events, to illustrate how the seasonal alternation of floods and droughts influence hydrology, microbial assemblages, water chemistry, and the potential for biogeochemical processing. Moreover, we revised some of the most influential conceptual and quantitative frameworks in river ecology to assess to what extent they incorporate the occurrence of extreme hydrological events. Based on this exercise, we identified knowledge gaps and challenges to guide future research on freshwater ecosystems under intensification of the hydrological cycle. Ultimately, we aimed to share the lessons learned from ecosystems naturally experiencing extreme hydrological events, which can help to better understand warming-induced impacts on hydrological transport and cycling of matter in fluvial ecosystems.</p></div>","PeriodicalId":8901,"journal":{"name":"Biogeochemistry","volume":"168 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10533-024-01197-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biogeochemistry","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1007/s10533-024-01197-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Climate warming is causing more extreme weather conditions, with both larger and more intense precipitation events as well as extended periods of drought in many regions of the world. The consequence is an alteration of the hydrological regime of streams and rivers, with an increase in the probability of extreme hydrological conditions. Mediterranean-climate regions usually experience extreme hydrological events on a seasonal basis and thus, freshwater Mediterranean ecosystems can be used as natural laboratories for better understanding how climate warming will impact ecosystem structure and functioning elsewhere. In this paper, we revisited and contextualized historical and new datasets collected at Fuirosos, a well-studied Mediterranean intermittent stream naturally experiencing extreme hydrological events, to illustrate how the seasonal alternation of floods and droughts influence hydrology, microbial assemblages, water chemistry, and the potential for biogeochemical processing. Moreover, we revised some of the most influential conceptual and quantitative frameworks in river ecology to assess to what extent they incorporate the occurrence of extreme hydrological events. Based on this exercise, we identified knowledge gaps and challenges to guide future research on freshwater ecosystems under intensification of the hydrological cycle. Ultimately, we aimed to share the lessons learned from ecosystems naturally experiencing extreme hydrological events, which can help to better understand warming-induced impacts on hydrological transport and cycling of matter in fluvial ecosystems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biogeochemistry
Biogeochemistry 环境科学-地球科学综合
CiteScore
7.10
自引率
5.00%
发文量
112
审稿时长
3.2 months
期刊介绍: Biogeochemistry publishes original and synthetic papers dealing with biotic controls on the chemistry of the environment, or with the geochemical control of the structure and function of ecosystems. Cycles are considered, either of individual elements or of specific classes of natural or anthropogenic compounds in ecosystems. Particular emphasis is given to coupled interactions of element cycles. The journal spans from the molecular to global scales to elucidate the mechanisms driving patterns in biogeochemical cycles through space and time. Studies on both natural and artificial ecosystems are published when they contribute to a general understanding of biogeochemistry.
期刊最新文献
Rapid response of moss-associated nitrogen fixation to nutrient additions in tropical montane cloud forests with different successional stages Expanding towards contraction: the alternation of floods and droughts as a fundamental component in river ecology Planktonic drivers of carbon transformation during different stages of the spring bloom at the Patagonian Shelf-break front, Southwestern Atlantic Ocean Sulfidic mine waste rock alkaliphilic microbial communities rapidly replaced by aerobic acidophiles following deposition Metal-bound carbon and nutrients across hydrologically diverse boreal peatlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1