{"title":"Multi-stage detection of warped ceiling panel using ensemble vision models for automated localization and quantification","authors":"Qinghua Guo, Weihang Gao, Qingzhao Kong, Xilin Lu","doi":"10.1111/mice.13414","DOIUrl":null,"url":null,"abstract":"Suspended ceiling systems constitute a pivotal non-structural component in buildings, and the warping of panels not only compromises the seismic performance but also affects the functional integrity. This paper proposes a novel multi-stage warped panel detection (MWPD) method to automatically locate warped panels from two-dimensional images and quantify their deformation. First, the Deep Hough Transform (DHT) is employed to localize the runner line, after that, each detected line is expanded to a rectangular strip. Then ResNet18 classifies the strips as warped or intact. Those classified as warped will undergo Gabor and horizontal Sobel filters successively to highlight the curved edge. Subsequently, the Generalized Hough Transform (GHT) is used to locate pixel points on the curve, and fitting these points yields the pixel-level radius of curvature. Leveraging known orthogonal relationships and geometric dimensions of runners, pixel quantification is converted into physical maximum deflection. The experiments include two aspects: the first is conducted on a validation dataset to verify the localization stability, and the second is carried out on-site for quantification validation. Results demonstrate that the proposed MWPD method effectively localizes the warped panel, achieving an accuracy of 92.2% on the validation dataset. Additionally, the quantitative test has achieved an accuracy of approximately 85%.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"28 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13414","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Suspended ceiling systems constitute a pivotal non-structural component in buildings, and the warping of panels not only compromises the seismic performance but also affects the functional integrity. This paper proposes a novel multi-stage warped panel detection (MWPD) method to automatically locate warped panels from two-dimensional images and quantify their deformation. First, the Deep Hough Transform (DHT) is employed to localize the runner line, after that, each detected line is expanded to a rectangular strip. Then ResNet18 classifies the strips as warped or intact. Those classified as warped will undergo Gabor and horizontal Sobel filters successively to highlight the curved edge. Subsequently, the Generalized Hough Transform (GHT) is used to locate pixel points on the curve, and fitting these points yields the pixel-level radius of curvature. Leveraging known orthogonal relationships and geometric dimensions of runners, pixel quantification is converted into physical maximum deflection. The experiments include two aspects: the first is conducted on a validation dataset to verify the localization stability, and the second is carried out on-site for quantification validation. Results demonstrate that the proposed MWPD method effectively localizes the warped panel, achieving an accuracy of 92.2% on the validation dataset. Additionally, the quantitative test has achieved an accuracy of approximately 85%.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.