{"title":"Causal discovery and fault diagnosis based on mixed data types for system reliability modeling","authors":"Xiaokang Wang, Siqi Jiang, Xinghan Li, Mozhu Wang","doi":"10.1007/s40747-024-01740-5","DOIUrl":null,"url":null,"abstract":"<p>Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euclidean data. In this paper, we address the issue by proposing a causal mapping process based on coordinate representations for heterogeneous non-Euclidean data. We propose a data generation mechanism between the parent nodes and the child nodes and create a causal mechanism based on multi-dimensional tensor regression. Furthermore, within the aforementioned theoretical framework, we propose a two-stage causal discovery approach based on regularized generalized canonical correlation analysis. Using the discrete representation in the shared projection direction, causal relationships between heterogeneous non-Euclidean variables can be discovered more accurately. Finally, empirical research is conducted on real-world industrial sensor data, which demonstrates the effectiveness of the proposed method for discovering causal relationships in heterogeneous non-Euclidean data.</p>","PeriodicalId":10524,"journal":{"name":"Complex & Intelligent Systems","volume":"79 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex & Intelligent Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40747-024-01740-5","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Causal relationships play an irreplaceable role in revealing the mechanisms of phenomena and guiding intervention actions. However, due to limitations in existing frameworks regarding model representations and learning algorithms, only a few studies have explored causal discovery on non-Euclidean data. In this paper, we address the issue by proposing a causal mapping process based on coordinate representations for heterogeneous non-Euclidean data. We propose a data generation mechanism between the parent nodes and the child nodes and create a causal mechanism based on multi-dimensional tensor regression. Furthermore, within the aforementioned theoretical framework, we propose a two-stage causal discovery approach based on regularized generalized canonical correlation analysis. Using the discrete representation in the shared projection direction, causal relationships between heterogeneous non-Euclidean variables can be discovered more accurately. Finally, empirical research is conducted on real-world industrial sensor data, which demonstrates the effectiveness of the proposed method for discovering causal relationships in heterogeneous non-Euclidean data.
期刊介绍:
Complex & Intelligent Systems aims to provide a forum for presenting and discussing novel approaches, tools and techniques meant for attaining a cross-fertilization between the broad fields of complex systems, computational simulation, and intelligent analytics and visualization. The transdisciplinary research that the journal focuses on will expand the boundaries of our understanding by investigating the principles and processes that underlie many of the most profound problems facing society today.