{"title":"The influence of portlandite, calcite, quartz and ettringite inclusions on the multiscale mechanical behaviors of C-S-H matrix","authors":"Zhe Zhang, Yuchen Hu, Lianyao Xiong, Guoqing Geng","doi":"10.1016/j.cemconres.2024.107781","DOIUrl":null,"url":null,"abstract":"C-S-H is the primary binder in cement mixed with additional phases. It is essential to understand how different phases impact cement strength. This study presents an innovative method for preparing a binary system doped with C-S-H and additional phases to study the effects of these phases on the composite's strength. By blending C-S-H with various minerals, we control mineral content precisely. Using multiscale techniques including atomic force microscopy (AFM), hardness and modulus measurements, we quantify the effects of minerals on C-S-H composites. Findings reveal the intrinsic moduli of these phases significantly influence composites' hardness, while cohesion affect compression modulus. Notably, quartz has a higher intrinsic modulus but lower cohesion than C-S-H, resulting in larger hardness but lower compression modulus. Ettringite shows reduced hardness and compression modulus, while calcite and portlandite's effects remain ambiguous due to lower cohesion but larger intrinsic modulus. These insights offer pathways for enhancing cementitious composites' performance.","PeriodicalId":266,"journal":{"name":"Cement and Concrete Research","volume":"20 1","pages":""},"PeriodicalIF":10.9000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cement and Concrete Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cemconres.2024.107781","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
C-S-H is the primary binder in cement mixed with additional phases. It is essential to understand how different phases impact cement strength. This study presents an innovative method for preparing a binary system doped with C-S-H and additional phases to study the effects of these phases on the composite's strength. By blending C-S-H with various minerals, we control mineral content precisely. Using multiscale techniques including atomic force microscopy (AFM), hardness and modulus measurements, we quantify the effects of minerals on C-S-H composites. Findings reveal the intrinsic moduli of these phases significantly influence composites' hardness, while cohesion affect compression modulus. Notably, quartz has a higher intrinsic modulus but lower cohesion than C-S-H, resulting in larger hardness but lower compression modulus. Ettringite shows reduced hardness and compression modulus, while calcite and portlandite's effects remain ambiguous due to lower cohesion but larger intrinsic modulus. These insights offer pathways for enhancing cementitious composites' performance.
期刊介绍:
Cement and Concrete Research is dedicated to publishing top-notch research on the materials science and engineering of cement, cement composites, mortars, concrete, and related materials incorporating cement or other mineral binders. The journal prioritizes reporting significant findings in research on the properties and performance of cementitious materials. It also covers novel experimental techniques, the latest analytical and modeling methods, examination and diagnosis of actual cement and concrete structures, and the exploration of potential improvements in materials.