Rudi Schuech, Lasse Tor Nielsen, Stuart Humphries, Dave Smith, Thomas Kiørboe
{"title":"Fluid dynamics of dinoflagellate feeding and swimming","authors":"Rudi Schuech, Lasse Tor Nielsen, Stuart Humphries, Dave Smith, Thomas Kiørboe","doi":"10.1002/lno.12764","DOIUrl":null,"url":null,"abstract":"Flagella are crucial to the interactions of unicellular organisms with their surrounding aquatic environment. One ecologically important group of flagellates, the dinoflagellates, has a unique flagellar arrangement consisting of a trailing and a transversal flagellum. The latter is recessed within a groove around the cell and drives a hair‐bearing membrane that undulates with a helical beat. Dinoflagellates are further unique by having clearance rates that are an order of magnitude higher than those of other similarly sized phagotrophic flagellates, overlapping in size and swimming speed with ciliates. Here, using flow visualization and computational fluid dynamics, we show how this arrangement of just two flagella propels these large cells at high speeds and allows very high clearance rates. We find that the transverse flagellum provides most of the forward thrust, whereas the trailing flagellum is mainly for steering. The flagellar hairs and the sheet‐like structure of the transverse flagellum allow dinoflagellates to exert strong propulsive forces at high efficiency without extending a long flagellum far into the surrounding fluid. The unique flagellar arrangement of dinoflagellates may therefore be key to their evolutionary success.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"14 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12764","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Flagella are crucial to the interactions of unicellular organisms with their surrounding aquatic environment. One ecologically important group of flagellates, the dinoflagellates, has a unique flagellar arrangement consisting of a trailing and a transversal flagellum. The latter is recessed within a groove around the cell and drives a hair‐bearing membrane that undulates with a helical beat. Dinoflagellates are further unique by having clearance rates that are an order of magnitude higher than those of other similarly sized phagotrophic flagellates, overlapping in size and swimming speed with ciliates. Here, using flow visualization and computational fluid dynamics, we show how this arrangement of just two flagella propels these large cells at high speeds and allows very high clearance rates. We find that the transverse flagellum provides most of the forward thrust, whereas the trailing flagellum is mainly for steering. The flagellar hairs and the sheet‐like structure of the transverse flagellum allow dinoflagellates to exert strong propulsive forces at high efficiency without extending a long flagellum far into the surrounding fluid. The unique flagellar arrangement of dinoflagellates may therefore be key to their evolutionary success.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.