Leishmania mexicana N‐Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Microbiology Pub Date : 2025-01-05 DOI:10.1111/mmi.15338
Suellen Rodrigues Maran, Ariely Barbosa Leite, Gabriela Gomes Alves, Bruno Souza Bonifácio, Carlos Eduardo Alves, Paulo Otávio Lourenço Moreira, Giovanna Marques Panessa, Heloísa Monteiro do Amaral Prado, Angélica Hollunder Klippel, José Renato Cussiol, Katlin Brauer Massirer, Tiago Rodrigues Ferreira, David Sacks, Clara Lúcia Barbiéri, Marcelo Santos da Silva, Rubens Lima do Monte‐Neto, Nilmar Silvio Moretti
{"title":"Leishmania mexicana N‐Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression","authors":"Suellen Rodrigues Maran, Ariely Barbosa Leite, Gabriela Gomes Alves, Bruno Souza Bonifácio, Carlos Eduardo Alves, Paulo Otávio Lourenço Moreira, Giovanna Marques Panessa, Heloísa Monteiro do Amaral Prado, Angélica Hollunder Klippel, José Renato Cussiol, Katlin Brauer Massirer, Tiago Rodrigues Ferreira, David Sacks, Clara Lúcia Barbiéri, Marcelo Santos da Silva, Rubens Lima do Monte‐Neto, Nilmar Silvio Moretti","doi":"10.1111/mmi.15338","DOIUrl":null,"url":null,"abstract":"<jats:italic>Leishmania</jats:italic> presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post‐transcriptional level and may involve epitranscriptomic modifications of RNAs. Recent studies have shown that mRNAs in humans undergo a modification known as N4‐acetylcytidine (ac4C) catalyzed by the enzyme N‐acetyltransferase (NAT10), impacting mRNAs stability and translation. Here, we characterized the NAT10 homologue of <jats:styled-content style=\"fixed-case\"><jats:italic>L. mexicana</jats:italic></jats:styled-content>, finding that the enzyme exhibits all the conserved acetyltransferase domains although failed to functionally complement the Kre33 mutant in <jats:styled-content style=\"fixed-case\"><jats:italic>Saccharomyces cerevisiae</jats:italic></jats:styled-content>. We also discovered that LmexNAT10 is nuclear, and seems essential, as evidenced by unsuccessful attempts to obtain null mutant parasites. Phenotypic characterization of single‐knockout parasites revealed that LmexNAT10 affects the multiplication of procyclic forms and the promastigote‐amastigote differentiation. Additionally, in vivo infection studies using the invertebrate vector <jats:italic>Lutzomyia longipalpis</jats:italic> showed a delay in the parasite differentiation into metacyclics. Finally, we observed changes in the cell cycle progression and protein synthesis in the mutant parasites. Together, these results suggest that LmexNAT10 might be important for parasite differentiation, potentially by regulating ac4C levels.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"34 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.15338","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Leishmania presents a complex life cycle that involves both invertebrate and vertebrate hosts. By regulating gene expression, protein synthesis, and metabolism, the parasite can adapt to various environmental conditions. This regulation occurs mainly at the post‐transcriptional level and may involve epitranscriptomic modifications of RNAs. Recent studies have shown that mRNAs in humans undergo a modification known as N4‐acetylcytidine (ac4C) catalyzed by the enzyme N‐acetyltransferase (NAT10), impacting mRNAs stability and translation. Here, we characterized the NAT10 homologue of L. mexicana, finding that the enzyme exhibits all the conserved acetyltransferase domains although failed to functionally complement the Kre33 mutant in Saccharomyces cerevisiae. We also discovered that LmexNAT10 is nuclear, and seems essential, as evidenced by unsuccessful attempts to obtain null mutant parasites. Phenotypic characterization of single‐knockout parasites revealed that LmexNAT10 affects the multiplication of procyclic forms and the promastigote‐amastigote differentiation. Additionally, in vivo infection studies using the invertebrate vector Lutzomyia longipalpis showed a delay in the parasite differentiation into metacyclics. Finally, we observed changes in the cell cycle progression and protein synthesis in the mutant parasites. Together, these results suggest that LmexNAT10 might be important for parasite differentiation, potentially by regulating ac4C levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
期刊最新文献
A Systematic Targeted Genetic Screen Identifies Proteins Involved in Cytoadherence of the Malaria Parasite P. falciparum In Vivo Nitrosative Stress‐Induced Expression of a Photolyase Promotes Vibrio cholerae Environmental Blue Light Resistance Autoregulation of the Master Regulator Spo0A Controls Cell-Fate Decisions in Bacillus subtilis Deciphering the Coupling State-Dependent Transcription Termination in the Escherichia coli Galactose Operon Leishmania mexicana N‐Acetyltransferease 10 Is Important for Polysome Formation and Cell Cycle Progression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1