Functionalized regioisomers of the natural product phenazines myxin and iodinin as potent inhibitors of Mycobacterium tuberculosis and human acute myeloid leukemia cells
{"title":"Functionalized regioisomers of the natural product phenazines myxin and iodinin as potent inhibitors of Mycobacterium tuberculosis and human acute myeloid leukemia cells","authors":"Goraksha Machhindra Khose, Siva Krishna Vagolu, Reidun Aesoy, Ísak Máni Stefánsson, Snorri Geir Ríkharðsson, Dagmar Ísleifsdóttir, Maonian Xu, Håvard Homberset, Tone Tønjum, Pål Rongved, Lars Herfindal, Elvar Örn Viktorsson","doi":"10.1016/j.ejmech.2025.117244","DOIUrl":null,"url":null,"abstract":"The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards <em>M. tuberculosis</em> (<em>Mtb</em>) strains, a human AML cell line (MOLM-13), and two non-cancerous mammalian cell lines (NRK and H9c2). Highly potent analogs were developed having IC<sub>50</sub> values against MTB down to 20 nM and 1.4 μM for human AML cells. 1-OH-3-<em>O</em>-alkyl substituted derivatives demonstrated high efficacy against <em>Mtb</em> and low toxicity in normal cells. 2,3-substituted regioisomers of myxin and iodinin were shown to be inactive, highlighting the importance of oxygen substituent in position 1 of the scaffold. A strong positive correlation between anti-MTB and anti-AML activity was revealed, suggesting a common mechanism of action in bacteria and cancer cells. These findings demonstrate the therapeutic potential of 1,3-<em>O</em>-functionalized phenazine 5,10-dioxides in chemotherapy for <em>Mtb</em> and AML and contribute to the structure-activity understanding of phenazine 5,10-dioxides with respect to their biological activity.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"14 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117244","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
The natural bioactive products myxin and iodinin are phenazine 5,10-dioxides possessing potent anti-bacterial and anti-cancer activity in vitro. This work describes the synthesis and derivatization of new myxin and iodinin regioisomers, developed from 1,3-dihydroxyphenazine 5,10-dioxide. Compounds were evaluated for activity towards M. tuberculosis (Mtb) strains, a human AML cell line (MOLM-13), and two non-cancerous mammalian cell lines (NRK and H9c2). Highly potent analogs were developed having IC50 values against MTB down to 20 nM and 1.4 μM for human AML cells. 1-OH-3-O-alkyl substituted derivatives demonstrated high efficacy against Mtb and low toxicity in normal cells. 2,3-substituted regioisomers of myxin and iodinin were shown to be inactive, highlighting the importance of oxygen substituent in position 1 of the scaffold. A strong positive correlation between anti-MTB and anti-AML activity was revealed, suggesting a common mechanism of action in bacteria and cancer cells. These findings demonstrate the therapeutic potential of 1,3-O-functionalized phenazine 5,10-dioxides in chemotherapy for Mtb and AML and contribute to the structure-activity understanding of phenazine 5,10-dioxides with respect to their biological activity.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.