NATURAL DEEP EUTECTIC SOLVENT-BASED LIQUID PHASE MICROEXTRACTION IN A 3D-PRINTED MILLIFLUIDIC FLOW CELL FOR THE ON-LINE DETERMINATION OF THIABENDAZOLE IN JUICE SAMPLES

IF 5.7 2区 化学 Q1 CHEMISTRY, ANALYTICAL Analytica Chimica Acta Pub Date : 2025-01-04 DOI:10.1016/j.aca.2025.343617
Myriam Díaz-Álvarez, Esther Turiel, Antonio Martín-Esteban
{"title":"NATURAL DEEP EUTECTIC SOLVENT-BASED LIQUID PHASE MICROEXTRACTION IN A 3D-PRINTED MILLIFLUIDIC FLOW CELL FOR THE ON-LINE DETERMINATION OF THIABENDAZOLE IN JUICE SAMPLES","authors":"Myriam Díaz-Álvarez, Esther Turiel, Antonio Martín-Esteban","doi":"10.1016/j.aca.2025.343617","DOIUrl":null,"url":null,"abstract":"<h3>Background</h3>At present, 3D printing technology is becoming increasingly popular in analytical chemistry because it enables the rapid and cost-effective manufacture of sample preparation devices, particularly in flow-based operation, opening up new opportunities for the development of automated analytical methods. In parallel, the use of miniaturised methods and sustainable solvents in sample preparation is highly recommended. Accordingly, in this work, a 3D-printed millifluidic device was designed and used for the on-line natural deep eutectic solvent (NADES)-based liquid phase microextraction (LPME) coupled to a spectrofluorometer for, as a proof of concept, the determination of thiabendazole (TBZ) in fruit juice samples.<h3>Results</h3>The millifluidic device was 3D printed by stereolithography and consisted of two patterned plates, each containing a millichannel (acceptor and donor channel). The millichannels were separated by a polypropylene membrane impregnated with optimal NADES, acting as a supported liquid membrane (SLM). Among the NADES investigated, formic acid:L-menthol (1:1 molar ratio) was selected as the SLM, avoiding the use of conventional harmful organic solvents. The proposed millifluidic device was successfully applied to the determination of thiabendazole in fruit juice samples, achieving LOD and LOQ values of 0.45 μg.L<sup>-1</sup> and 1.42 μg.L<sup>-1</sup>, respectively, which are well below the maximum residue levels (MRLs) set by the European Union. The greenness and applicability of the proposed analytical method were evaluated using the AGREEPrep, SPMS and BAGI tools and compared with other published methods. In general, the proposed method was superior to others, mainly due to its high sensitivity and high sample throughput.<h3>Significance</h3>Several cells were easily designed with different channel geometries (length and depth) to find the optimal dimensions, and then 3D printed and tested in a relatively fast, cheap and simple way, demonstrating the suitability of 3D printing in the fabrication of millifluidic devices as an alternative to traditional fabrication techniques. In addition, the proposed approach is fully compatible with new sustainable solvents, facilitating the development of green sample preparation methods.","PeriodicalId":240,"journal":{"name":"Analytica Chimica Acta","volume":"40 1","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.aca.2025.343617","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background

At present, 3D printing technology is becoming increasingly popular in analytical chemistry because it enables the rapid and cost-effective manufacture of sample preparation devices, particularly in flow-based operation, opening up new opportunities for the development of automated analytical methods. In parallel, the use of miniaturised methods and sustainable solvents in sample preparation is highly recommended. Accordingly, in this work, a 3D-printed millifluidic device was designed and used for the on-line natural deep eutectic solvent (NADES)-based liquid phase microextraction (LPME) coupled to a spectrofluorometer for, as a proof of concept, the determination of thiabendazole (TBZ) in fruit juice samples.

Results

The millifluidic device was 3D printed by stereolithography and consisted of two patterned plates, each containing a millichannel (acceptor and donor channel). The millichannels were separated by a polypropylene membrane impregnated with optimal NADES, acting as a supported liquid membrane (SLM). Among the NADES investigated, formic acid:L-menthol (1:1 molar ratio) was selected as the SLM, avoiding the use of conventional harmful organic solvents. The proposed millifluidic device was successfully applied to the determination of thiabendazole in fruit juice samples, achieving LOD and LOQ values of 0.45 μg.L-1 and 1.42 μg.L-1, respectively, which are well below the maximum residue levels (MRLs) set by the European Union. The greenness and applicability of the proposed analytical method were evaluated using the AGREEPrep, SPMS and BAGI tools and compared with other published methods. In general, the proposed method was superior to others, mainly due to its high sensitivity and high sample throughput.

Significance

Several cells were easily designed with different channel geometries (length and depth) to find the optimal dimensions, and then 3D printed and tested in a relatively fast, cheap and simple way, demonstrating the suitability of 3D printing in the fabrication of millifluidic devices as an alternative to traditional fabrication techniques. In addition, the proposed approach is fully compatible with new sustainable solvents, facilitating the development of green sample preparation methods.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytica Chimica Acta
Analytica Chimica Acta 化学-分析化学
CiteScore
10.40
自引率
6.50%
发文量
1081
审稿时长
38 days
期刊介绍: Analytica Chimica Acta has an open access mirror journal Analytica Chimica Acta: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Analytica Chimica Acta provides a forum for the rapid publication of original research, and critical, comprehensive reviews dealing with all aspects of fundamental and applied modern analytical chemistry. The journal welcomes the submission of research papers which report studies concerning the development of new and significant analytical methodologies. In determining the suitability of submitted articles for publication, particular scrutiny will be placed on the degree of novelty and impact of the research and the extent to which it adds to the existing body of knowledge in analytical chemistry.
期刊最新文献
Review on activity-based detection of doping substances and growth promotors in biological matrices: do bioassays deserve a place in control programs? Look but don't touch: Non-invasive chemical analysis of organic paint binders - A review. Novel nitrogen-doped carbon dots with triple targetability as a fluorescent probe for bioimaging of living cells Bioorthogonal Click Chemistry and Aptamer-targeting Enables Highly Selective Fluorescence Labeling of Exosomal Glycosylated EpCAM for Super Resolved Imaging A review of research progress on COF-based biosensors in pathogen detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1