Liangliang Zhao, Rui Zhang, Yupei Du, Guifen Zhou, Lige Wen, Hua Zhang
{"title":"Research in innovative mesh wheel with bionic wheel surfaces and lugs for superior lunar rover performance","authors":"Liangliang Zhao, Rui Zhang, Yupei Du, Guifen Zhou, Lige Wen, Hua Zhang","doi":"10.1016/j.actaastro.2024.12.062","DOIUrl":null,"url":null,"abstract":"As lunar exploration progressed, unmanned lunar rovers encountered harsher and more variable working environments, increasingly complex operating conditions, and greater exploration range requirements. Existing unmanned lunar mesh wheels could not meet the demands of future lunar missions, which required higher traction performance, greater reliability, and lower power consumption. In this study, inspired by the functional characteristics of ostrich toes, we designed a bionic wheel and a comparison wheel. By interchanging the wheel surfaces and lugs (grousers), four types of mesh wheels (Wheels 1–4) were developed and tested. Various loads and slip ratios were applied to investigate how the surface shape of the mesh wheel and the shape of its lugs influenced traction performance and enhanced overall traction. The test results indicated that Wheel 1 outperformed the other wheels in terms of traction performance under the specified conditions and demonstrated greater energy efficiency at lower slip ratios. This led the compacted particles beneath the bionic wheel surface to generate a lateral forward reaction force, thereby propelling the wheel. This caused the compacted particles beneath the bionic wheel surface to generate a lateral forward reaction force, thereby propelling the wheel forward. The bionic lugs operated on a similar principle; however, their contribution to traction was less significant than that of the bionic wheel surface. The innovative design of the wheel surface and lugs effectively addressed the limitations of existing lunar mesh wheel structures.","PeriodicalId":44971,"journal":{"name":"Acta Astronautica","volume":"74 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Astronautica","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.actaastro.2024.12.062","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0
Abstract
As lunar exploration progressed, unmanned lunar rovers encountered harsher and more variable working environments, increasingly complex operating conditions, and greater exploration range requirements. Existing unmanned lunar mesh wheels could not meet the demands of future lunar missions, which required higher traction performance, greater reliability, and lower power consumption. In this study, inspired by the functional characteristics of ostrich toes, we designed a bionic wheel and a comparison wheel. By interchanging the wheel surfaces and lugs (grousers), four types of mesh wheels (Wheels 1–4) were developed and tested. Various loads and slip ratios were applied to investigate how the surface shape of the mesh wheel and the shape of its lugs influenced traction performance and enhanced overall traction. The test results indicated that Wheel 1 outperformed the other wheels in terms of traction performance under the specified conditions and demonstrated greater energy efficiency at lower slip ratios. This led the compacted particles beneath the bionic wheel surface to generate a lateral forward reaction force, thereby propelling the wheel. This caused the compacted particles beneath the bionic wheel surface to generate a lateral forward reaction force, thereby propelling the wheel forward. The bionic lugs operated on a similar principle; however, their contribution to traction was less significant than that of the bionic wheel surface. The innovative design of the wheel surface and lugs effectively addressed the limitations of existing lunar mesh wheel structures.
期刊介绍:
Acta Astronautica is sponsored by the International Academy of Astronautics. Content is based on original contributions in all fields of basic, engineering, life and social space sciences and of space technology related to:
The peaceful scientific exploration of space,
Its exploitation for human welfare and progress,
Conception, design, development and operation of space-borne and Earth-based systems,
In addition to regular issues, the journal publishes selected proceedings of the annual International Astronautical Congress (IAC), transactions of the IAA and special issues on topics of current interest, such as microgravity, space station technology, geostationary orbits, and space economics. Other subject areas include satellite technology, space transportation and communications, space energy, power and propulsion, astrodynamics, extraterrestrial intelligence and Earth observations.