Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio)

IF 4.1 2区 环境科学与生态学 Q1 MARINE & FRESHWATER BIOLOGY Aquatic Toxicology Pub Date : 2025-02-01 DOI:10.1016/j.aquatox.2024.107230
Chaoqiong Wu , Guanghua Mao , Xiang Ji , Yao Chen , Xin Geng , Emmanuel Sunday Okeke , Yangyang Ding , Liuqing Yang , Xiangyang Wu , Weiwei Feng
{"title":"Neurodevelopmental toxicity and mechanism of action of monoethylhexyl phthalate (MEHP) in the developing zebrafish (Danio rerio)","authors":"Chaoqiong Wu ,&nbsp;Guanghua Mao ,&nbsp;Xiang Ji ,&nbsp;Yao Chen ,&nbsp;Xin Geng ,&nbsp;Emmanuel Sunday Okeke ,&nbsp;Yangyang Ding ,&nbsp;Liuqing Yang ,&nbsp;Xiangyang Wu ,&nbsp;Weiwei Feng","doi":"10.1016/j.aquatox.2024.107230","DOIUrl":null,"url":null,"abstract":"<div><div>Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear. Accordingly, the present study was designed to investigate the neurodevelopmental toxicity of MEHP exposure and the underlying molecular mechanisms. Zebrafish juveniles were exposed to different concentrations of MEHP (7.42, 14.84, 29.68 and 74.2 μg/L) for a period of four weeks. Immunohistological evidence indicated that MEHP exposure resulted in oxidative stress and apoptosis in the developing zebrafish brain. Subsequently, the neurobehaviour of zebrafish larvae was evaluated, and it was determined that MEHP significantly disrupted their locomotor capacity, motor vigor, and social conduct. Furthermore, HE staining revealed damage to brain neurons, which may be linked to impaired synthesis and conduction of inter-synaptic neurotransmitters. Transcriptomic analyses indicated that MEHP may affect the expression levels of genes in the P53 signalling pathway and signalling pathways related to the development of the nervous system. This results in impaired functions, including nerve conduction and neuronal development. Additionally, it induces oxidative stress, which leads to significant brain cell apoptosis and, ultimately, neurotoxicity in developing zebrafish.</div></div>","PeriodicalId":248,"journal":{"name":"Aquatic Toxicology","volume":"279 ","pages":"Article 107230"},"PeriodicalIF":4.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aquatic Toxicology","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166445X24003990","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MARINE & FRESHWATER BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Monoethylhexyl phthalate (MEHP) is the primary metabolite of di(2-ethylhexyl) phthalate (DEHP), the most prevalent phthalate plasticiser globally. It has been demonstrated that MEHP exerts more potent toxic effects than DEHP. Nevertheless, the full extent of the toxicity of MEHP to neurodevelopmental organisms remains unclear. Accordingly, the present study was designed to investigate the neurodevelopmental toxicity of MEHP exposure and the underlying molecular mechanisms. Zebrafish juveniles were exposed to different concentrations of MEHP (7.42, 14.84, 29.68 and 74.2 μg/L) for a period of four weeks. Immunohistological evidence indicated that MEHP exposure resulted in oxidative stress and apoptosis in the developing zebrafish brain. Subsequently, the neurobehaviour of zebrafish larvae was evaluated, and it was determined that MEHP significantly disrupted their locomotor capacity, motor vigor, and social conduct. Furthermore, HE staining revealed damage to brain neurons, which may be linked to impaired synthesis and conduction of inter-synaptic neurotransmitters. Transcriptomic analyses indicated that MEHP may affect the expression levels of genes in the P53 signalling pathway and signalling pathways related to the development of the nervous system. This results in impaired functions, including nerve conduction and neuronal development. Additionally, it induces oxidative stress, which leads to significant brain cell apoptosis and, ultimately, neurotoxicity in developing zebrafish.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
邻苯二甲酸一乙基己基酯(MEHP)对发育中的斑马鱼的神经发育毒性及作用机制
邻苯二甲酸一乙基己基酯(MEHP)是邻苯二甲酸二(2-乙基己基)酯(DEHP)的主要代谢物,邻苯二甲酸二酯(DEHP)是全球最普遍的邻苯二甲酸酯增塑剂。已经证明,MEHP比DEHP具有更强的毒性作用。然而,MEHP对神经发育生物体的毒性程度仍不清楚。因此,本研究旨在探讨MEHP暴露的神经发育毒性及其潜在的分子机制。将斑马鱼幼鱼暴露于不同浓度的MEHP(7.42、14.84、29.68和74.2 μg/L)中4周。免疫组织学证据表明,MEHP暴露导致发育中的斑马鱼大脑氧化应激和细胞凋亡。随后,对斑马鱼幼虫的神经行为进行了评估,确定MEHP显著破坏了斑马鱼的运动能力、运动活力和社会行为。此外,HE染色显示脑神经元损伤,这可能与突触间神经递质的合成和传导受损有关。转录组学分析表明,MEHP可能影响P53信号通路及神经系统发育相关信号通路基因的表达水平。这导致功能受损,包括神经传导和神经元发育。此外,它还会诱导氧化应激,从而导致脑细胞凋亡,并最终导致发育中的斑马鱼的神经毒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Aquatic Toxicology
Aquatic Toxicology 环境科学-毒理学
CiteScore
7.10
自引率
4.40%
发文量
250
审稿时长
56 days
期刊介绍: Aquatic Toxicology publishes significant contributions that increase the understanding of the impact of harmful substances (including natural and synthetic chemicals) on aquatic organisms and ecosystems. Aquatic Toxicology considers both laboratory and field studies with a focus on marine/ freshwater environments. We strive to attract high quality original scientific papers, critical reviews and expert opinion papers in the following areas: Effects of harmful substances on molecular, cellular, sub-organismal, organismal, population, community, and ecosystem level; Toxic Mechanisms; Genetic disturbances, transgenerational effects, behavioral and adaptive responses; Impacts of harmful substances on structure, function of and services provided by aquatic ecosystems; Mixture toxicity assessment; Statistical approaches to predict exposure to and hazards of contaminants The journal also considers manuscripts in other areas, such as the development of innovative concepts, approaches, and methodologies, which promote the wider application of toxicological datasets to the protection of aquatic environments and inform ecological risk assessments and decision making by relevant authorities.
期刊最新文献
Acute cardiorespiratory effects of 6PPD-quinone on juvenile rainbow trout (Oncorhynchus mykiss) and arctic char (Salvelinus alpinus) Modelling the size distribution and bioaccumulation of gold nanoparticles under mixture exposure BIF-induced ROS-mediated cytotoxicity and genotoxicity in embryonic cell culture of Daphnia magna Antibacterials exert toxic effects on aquatic organisms by inhibiting respiration, inducing oxidative stress, mitochondrial dysfunction and autophagy Combined effect of mercury and ammonia toxicity and its mitigation through selenium nanoparticles in fish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1