InP/GaAsSb Double Heterojunction Bipolar Transistor Characterization and Compact Modeling up to 500 GHz

IF 2.9 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Electron Devices Pub Date : 2024-12-11 DOI:10.1109/TED.2024.3506505
Marina Deng;Chhandak Mukherjee;Lucas Réveil;Akshay M. Arabhavi;Sara Hamzeloui;Colombo R. Bolognesi;Magali De Matos;Cristell Maneux
{"title":"InP/GaAsSb Double Heterojunction Bipolar Transistor Characterization and Compact Modeling up to 500 GHz","authors":"Marina Deng;Chhandak Mukherjee;Lucas Réveil;Akshay M. Arabhavi;Sara Hamzeloui;Colombo R. Bolognesi;Magali De Matos;Cristell Maneux","doi":"10.1109/TED.2024.3506505","DOIUrl":null,"url":null,"abstract":"This article presents a new methodology to accurately characterize indium phosphide (InP) bipolar transistors up to 500 GHz. Following design optimization of RF test structures specifically developed for the on-wafer thru-reflect-line (TRL) calibration technique, InP/GaAsSb double heterojunction bipolar transistors have been successfully characterized up to 500 GHz. Moreover, the high current model (HICUM) compact model was validated against measurements for different operating conditions and various geometries for the first time up to 500 GHz. The physics-based compact model and the associated scalable parameter extraction flow allowed us to demonstrate the scalability of this terahertz (THz) InP double heterojunction transistor (DHBT) technology, offering possibilities for further design-level explorations. State-of-the-art cut-off frequencies of this THz transistor technology featuring \n<inline-formula> <tex-math>${f}_{\\text {MAX}}$ </tex-math></inline-formula>\n reaching 1 THz for transistor geometries with 0.15-\n<inline-formula> <tex-math>$\\mu \\text {m}$ </tex-math></inline-formula>\n emitter widths were experimentally verified and confirmed by the compact model predictions.","PeriodicalId":13092,"journal":{"name":"IEEE Transactions on Electron Devices","volume":"72 1","pages":"175-180"},"PeriodicalIF":2.9000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Electron Devices","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10787345/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents a new methodology to accurately characterize indium phosphide (InP) bipolar transistors up to 500 GHz. Following design optimization of RF test structures specifically developed for the on-wafer thru-reflect-line (TRL) calibration technique, InP/GaAsSb double heterojunction bipolar transistors have been successfully characterized up to 500 GHz. Moreover, the high current model (HICUM) compact model was validated against measurements for different operating conditions and various geometries for the first time up to 500 GHz. The physics-based compact model and the associated scalable parameter extraction flow allowed us to demonstrate the scalability of this terahertz (THz) InP double heterojunction transistor (DHBT) technology, offering possibilities for further design-level explorations. State-of-the-art cut-off frequencies of this THz transistor technology featuring ${f}_{\text {MAX}}$ reaching 1 THz for transistor geometries with 0.15- $\mu \text {m}$ emitter widths were experimentally verified and confirmed by the compact model predictions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高达500 GHz的InP/GaAsSb双异质结双极晶体管特性和紧凑建模
本文提出了一种新的方法来精确表征高达500 GHz的磷化铟(InP)双极晶体管。在对专为晶圆上透反射线(TRL)校准技术开发的射频测试结构进行设计优化后,InP/GaAsSb双异质结双极晶体管已成功地进行了高达500 GHz的表征。此外,高电流模型(HICUM)紧凑型模型首次在高达500 GHz的不同工作条件和各种几何形状下进行了验证。基于物理的紧凑模型和相关的可扩展参数提取流程使我们能够展示这种太赫兹(THz) InP双异质结晶体管(DHBT)技术的可扩展性,为进一步的设计级探索提供了可能性。对于发射极宽度为0.15- $\mu \text {m}$的晶体管几何形状,最先进的太赫兹晶体管技术的截止频率${f}_{\text {MAX}}$达到1太赫兹,实验验证并通过紧凑模型预测得到证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Electron Devices
IEEE Transactions on Electron Devices 工程技术-工程:电子与电气
CiteScore
5.80
自引率
16.10%
发文量
937
审稿时长
3.8 months
期刊介绍: IEEE Transactions on Electron Devices publishes original and significant contributions relating to the theory, modeling, design, performance and reliability of electron and ion integrated circuit devices and interconnects, involving insulators, metals, organic materials, micro-plasmas, semiconductors, quantum-effect structures, vacuum devices, and emerging materials with applications in bioelectronics, biomedical electronics, computation, communications, displays, microelectromechanics, imaging, micro-actuators, nanoelectronics, optoelectronics, photovoltaics, power ICs and micro-sensors. Tutorial and review papers on these subjects are also published and occasional special issues appear to present a collection of papers which treat particular areas in more depth and breadth.
期刊最新文献
Table of Contents IEEE ELECTRON DEVICES SOCIETY IEEE Transactions on Electron Devices Information for Authors Advanced Bragg Resonator Integration for Enhanced Bandwidth and Stability in G-Band TWT With Staggered Double Vane Structure In-Circuit Inductance Measurement to Correct the Single-Pulse Avalanche Energy (Eas) of Transistor Under the Unclamped Inductive-Switching (UIS) Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1