Response and variation mechanisms of RDX crystals under strong magnetic loading

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-01-06 DOI:10.1039/D4RA07974D
Jun Tao, Haichao Ren and Yufan Bu
{"title":"Response and variation mechanisms of RDX crystals under strong magnetic loading","authors":"Jun Tao, Haichao Ren and Yufan Bu","doi":"10.1039/D4RA07974D","DOIUrl":null,"url":null,"abstract":"<p >To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy. Also, the thermal decomposition characteristics of RDX exposed to magnetic fields were determined by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Furthermore, positron annihilation lifetime spectroscopy was performed to characterize the micro defects in RDX after strong magnetic interaction. Finally, molecular dynamics simulation was conducted to calculate the lattice constant, microscopic distribution, initiation bonds, and density of states for the RDX exposed to magnetic fields. The results show that after 10 hours of irradiation with a stable high-intensity magnetic field of 6T, the RDX crystals exhibit more pronounced grooves on their surfaces, and the relative intensity of Raman peaks may change due to the stress generated by magnetic field exposure. Comparatively, an alternating magnetic field of ±6T facilitates the peeling off of small particles on the surface, induces greater strain, and results in surface dislocations. With various pronounced grooves and pores, the surface of RDX crystals exhibits a fish scale-like structure. After the exposure to an alternating magnetic field, significant changes occur to multiple wavenumber positions of the RDX Raman spectrum, indicating a considerable strain on the sample caused by the change in magnetic field. The treatment with a strong magnetic field leads to a significant increase in the number of micro pores measured to be 4–5 nm in RDX samples. According to the calculation results, the structural stability of RDX is higher compared to the RDX without a magnetic field, and the energy gap of the crystal is suppressed by a stronger magnetic field.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 1","pages":" 489-500"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra07974d?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra07974d","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To fully understand the variation in performance of cyclotrimethylenetrinitramine (RDX) crystals under strong magnetic field exposure, the strong magnetic loading of RDX was conducted in both stable and alternating magnetic fields. The morphological changes of RDX crystals exposed to magnetic fields were studied under a scanning electron microscope. Then, the lattice changes of RDX exposed to magnetic fields were analyzed through X-ray diffraction and Raman spectroscopy. Also, the thermal decomposition characteristics of RDX exposed to magnetic fields were determined by means of differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Furthermore, positron annihilation lifetime spectroscopy was performed to characterize the micro defects in RDX after strong magnetic interaction. Finally, molecular dynamics simulation was conducted to calculate the lattice constant, microscopic distribution, initiation bonds, and density of states for the RDX exposed to magnetic fields. The results show that after 10 hours of irradiation with a stable high-intensity magnetic field of 6T, the RDX crystals exhibit more pronounced grooves on their surfaces, and the relative intensity of Raman peaks may change due to the stress generated by magnetic field exposure. Comparatively, an alternating magnetic field of ±6T facilitates the peeling off of small particles on the surface, induces greater strain, and results in surface dislocations. With various pronounced grooves and pores, the surface of RDX crystals exhibits a fish scale-like structure. After the exposure to an alternating magnetic field, significant changes occur to multiple wavenumber positions of the RDX Raman spectrum, indicating a considerable strain on the sample caused by the change in magnetic field. The treatment with a strong magnetic field leads to a significant increase in the number of micro pores measured to be 4–5 nm in RDX samples. According to the calculation results, the structural stability of RDX is higher compared to the RDX without a magnetic field, and the energy gap of the crystal is suppressed by a stronger magnetic field.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Solvometallurgical recovery of antimony from waste polyvinyl chloride plastic and co-extraction of organic additives† Impact of pre-crosslinks on the self-transformation performance of thermoplastic polyesters into vitrimers via intermolecular transesterification† An eco-friendly and cost-effective approach for the synthesis of a novel GA@CuO–ZnO nanocomposite: characterization, antimicrobial and anticancer activities Thermomechanical and mechanical analysis of polylactic acid/polyhydroxyalkanoate/poly(butylene succinate-co-adipate) binary and ternary blends† Response and variation mechanisms of RDX crystals under strong magnetic loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1