Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor

IF 9.2 1区 医学 Q1 PERIPHERAL VASCULAR DISEASE Angiogenesis Pub Date : 2025-01-05 DOI:10.1007/s10456-024-09966-0
Anbukkarasi Muniyandi, Gabriella D. Hartman, Kamakshi Sishtla, Ratan Rai, Cátia Gomes, Kristina Day, Yang Song, Andi R. Masters, Sara K. Quinney, Xiaoping Qi, Hailey Woods, Michael E. Boulton, Jason S. Meyer, Jonah Z. Vilseck, Millie M. Georgiadis, Mark R. Kelley, Timothy W. Corson
{"title":"Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor","authors":"Anbukkarasi Muniyandi,&nbsp;Gabriella D. Hartman,&nbsp;Kamakshi Sishtla,&nbsp;Ratan Rai,&nbsp;Cátia Gomes,&nbsp;Kristina Day,&nbsp;Yang Song,&nbsp;Andi R. Masters,&nbsp;Sara K. Quinney,&nbsp;Xiaoping Qi,&nbsp;Hailey Woods,&nbsp;Michael E. Boulton,&nbsp;Jason S. Meyer,&nbsp;Jonah Z. Vilseck,&nbsp;Millie M. Georgiadis,&nbsp;Mark R. Kelley,&nbsp;Timothy W. Corson","doi":"10.1007/s10456-024-09966-0","DOIUrl":null,"url":null,"abstract":"<div><p>Reduction–oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV). Here, we set out to further explore Ref-1 in neovascular eye disease. Ref-1 was highly expressed in human nAMD, murine laser-induced CNV and <i>Vldlr</i><sup>−/−</sup> mouse subretinal neovascularization (SRN). Ref-1’s interaction with a redox-specific small molecule inhibitor, APX2009, was shown by NMR and docking. This compound blocks crucial angiogenic features in multiple endothelial cell types. APX2009 also ameliorated murine laser-induced choroidal neovascularization (L-CNV) when delivered intravitreally. Moreover, systemic APX2009 reduced murine SRN and downregulated the expression of Ref-1 redox regulated HIF-1α target carbonic anhydrase 9 (CA9) in the <i>Vldlr</i><sup>−/−</sup> mouse model. Our data validate the redox function of Ref-1 as a critical regulator of ocular angiogenesis, indicating that inhibition of Ref-1 holds therapeutic potential for treating nAMD.</p></div>","PeriodicalId":7886,"journal":{"name":"Angiogenesis","volume":"28 1","pages":""},"PeriodicalIF":9.2000,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angiogenesis","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s10456-024-09966-0","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PERIPHERAL VASCULAR DISEASE","Score":null,"Total":0}
引用次数: 0

Abstract

Reduction–oxidation factor-1 or apurinic/apyrimidinic endonuclease 1 (Ref-1/APE1) is a crucial redox-sensitive activator of transcription factors such as NF-κB, HIF-1α, STAT-3 and others. It could contribute to key features of ocular neovascularization including inflammation and angiogenesis; these underlie diseases like neovascular age-related macular degeneration (nAMD). We previously revealed a role for Ref-1 in the growth of ocular endothelial cells and in choroidal neovascularization (CNV). Here, we set out to further explore Ref-1 in neovascular eye disease. Ref-1 was highly expressed in human nAMD, murine laser-induced CNV and Vldlr−/− mouse subretinal neovascularization (SRN). Ref-1’s interaction with a redox-specific small molecule inhibitor, APX2009, was shown by NMR and docking. This compound blocks crucial angiogenic features in multiple endothelial cell types. APX2009 also ameliorated murine laser-induced choroidal neovascularization (L-CNV) when delivered intravitreally. Moreover, systemic APX2009 reduced murine SRN and downregulated the expression of Ref-1 redox regulated HIF-1α target carbonic anhydrase 9 (CA9) in the Vldlr−/− mouse model. Our data validate the redox function of Ref-1 as a critical regulator of ocular angiogenesis, indicating that inhibition of Ref-1 holds therapeutic potential for treating nAMD.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Angiogenesis
Angiogenesis PERIPHERAL VASCULAR DISEASE-
CiteScore
21.90
自引率
8.20%
发文量
37
审稿时长
6-12 weeks
期刊介绍: Angiogenesis, a renowned international journal, seeks to publish high-quality original articles and reviews on the cellular and molecular mechanisms governing angiogenesis in both normal and pathological conditions. By serving as a primary platform for swift communication within the field of angiogenesis research, this multidisciplinary journal showcases pioneering experimental studies utilizing molecular techniques, in vitro methods, animal models, and clinical investigations into angiogenic diseases. Furthermore, Angiogenesis sheds light on cutting-edge therapeutic strategies for promoting or inhibiting angiogenesis, while also highlighting fresh markers and techniques for disease diagnosis and prognosis.
期刊最新文献
Ref-1 is overexpressed in neovascular eye disease and targetable with a novel inhibitor A novel quantitative angiogenesis assay based on visualized vascular organoid Effect of oral nintedanib vs placebo on epistaxis in hereditary hemorrhagic telangiectasia: the EPICURE multicenter randomized double-blind trial Circulating endothelial cells: a key biomarker of persistent fatigue after hospitalization for COVID-19 Neuropilin-1 controls vascular permeability through juxtacrine regulation of endothelial adherens junctions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1