A. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, J. Boumaaza, M. Bouta, M. C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J. A. B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A. F. Díaz, B. De Martino, C. Distefano, I. Di Palma, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, A. Eddymaoui, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, H. van Haren, A. J. Heijboer, Y. Hello, L. Hennig, J. J. Hernández-Rey, J. Hößl, F. Huang, G. Illuminati, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, S. Loucatos, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, S. Navas, E. Nezri, B. Ó Fearraigh, E. Oukacha, A. Păun, G. E. Păvălaş, S. Peña-Martínez, M. Perrin-Terrin, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J. D. Zornoza, J. Zúñiga
{"title":"Acoustic positioning for deep sea neutrino telescopes with a system of piezo sensors integrated into glass spheres","authors":"A. Albert, S. Alves, M. André, M. Ardid, S. Ardid, J.-J. Aubert, J. Aublin, B. Baret, S. Basa, Y. Becherini, B. Belhorma, M. Bendahman, F. Benfenati, V. Bertin, S. Biagi, J. Boumaaza, M. Bouta, M. C. Bouwhuis, H. Brânzaş, R. Bruijn, J. Brunner, J. Busto, B. Caiffi, D. Calvo, S. Campion, A. Capone, F. Carenini, J. Carr, V. Carretero, S. Celli, L. Cerisy, M. Chabab, R. Cherkaoui El Moursli, T. Chiarusi, M. Circella, J. A. B. Coelho, A. Coleiro, R. Coniglione, P. Coyle, A. Creusot, A. F. Díaz, B. De Martino, C. Distefano, I. Di Palma, C. Donzaud, D. Dornic, D. Drouhin, T. Eberl, A. Eddymaoui, T. van Eeden, D. van Eijk, S. El Hedri, N. El Khayati, A. Enzenhöfer, P. Fermani, G. Ferrara, F. Filippini, L. Fusco, S. Gagliardini, J. García, C. Gatius Oliver, P. Gay, N. Geißelbrecht, H. Glotin, R. Gozzini, R. Gracia Ruiz, K. Graf, C. Guidi, L. Haegel, H. van Haren, A. J. Heijboer, Y. Hello, L. Hennig, J. J. Hernández-Rey, J. Hößl, F. Huang, G. Illuminati, B. Jisse-Jung, M. de Jong, P. de Jong, M. Kadler, O. Kalekin, U. Katz, A. Kouchner, I. Kreykenbohm, V. Kulikovskiy, R. Lahmann, M. Lamoureux, A. Lazo, D. Lefèvre, E. Leonora, G. Levi, S. Le Stum, S. Loucatos, J. Manczak, M. Marcelin, A. Margiotta, A. Marinelli, J. A. Martínez-Mora, P. Migliozzi, A. Moussa, R. Muller, S. Navas, E. Nezri, B. Ó Fearraigh, E. Oukacha, A. Păun, G. E. Păvălaş, S. Peña-Martínez, M. Perrin-Terrin, P. Piattelli, C. Poirè, V. Popa, T. Pradier, N. Randazzo, D. Real, G. Riccobene, A. Romanov, A. Sánchez-Losa, A. Saina, F. Salesa Greus, D. F. E. Samtleben, M. Sanguineti, P. Sapienza, F. Schüssler, J. Seneca, M. Spurio, Th. Stolarczyk, M. Taiuti, Y. Tayalati, B. Vallage, G. Vannoye, V. Van Elewyck, S. Viola, D. Vivolo, J. Wilms, S. Zavatarelli, A. Zegarelli, J. D. Zornoza, J. Zúñiga","doi":"10.1007/s10686-024-09971-7","DOIUrl":null,"url":null,"abstract":"<div><p>Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding <b>2000 m</b>. It comprised nearly 900 glass spheres with <b>432 mm</b> diameter and <b>15 mm</b> thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from <b>46545 to 60235 Hz</b>. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with <span>\\(\\varvec{v_e \\approx 5\\,{\\textbf {mm}}/\\mu \\text {s}}\\)</span> and a slow (late) one with <span>\\(\\varvec{v_\\ell \\approx \\,2\\,{\\textbf {mm}}/\\mu \\text {s}}\\)</span>. Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"59 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-024-09971-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-024-09971-7","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Position calibration in the deep sea is typically done by means of acoustic multilateration using three or more acoustic emitters installed at known positions. Rather than using hydrophones as receivers that are exposed to the ambient pressure, the sound signals can be coupled to piezo ceramics glued to the inside of existing containers for electronics or measuring instruments of a deep sea infrastructure. The ANTARES neutrino telescope operated from 2006 until 2022 in the Mediterranean Sea at a depth exceeding 2000 m. It comprised nearly 900 glass spheres with 432 mm diameter and 15 mm thickness, equipped with photomultiplier tubes to detect Cherenkov light from tracks of charged elementary particles. In an experimental setup within ANTARES, piezo sensors have been glued to the inside of such – otherwise empty – glass spheres. These sensors recorded signals from acoustic emitters with frequencies from 46545 to 60235 Hz. Two waves propagating through the glass sphere are found as a result of the excitation by the waves in the water. These can be qualitatively associated with symmetric and asymmetric Lamb-like waves of zeroth order: a fast (early) one with \(\varvec{v_e \approx 5\,{\textbf {mm}}/\mu \text {s}}\) and a slow (late) one with \(\varvec{v_\ell \approx \,2\,{\textbf {mm}}/\mu \text {s}}\). Taking these findings into account improves the accuracy of the position calibration. The results can be transferred to the KM3NeT neutrino telescope, currently under construction at multiple sites in the Mediterranean Sea, for which the concept of piezo sensors glued to the inside of glass spheres has been adapted for monitoring the positions of the photomultiplier tubes.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.