Cationic and Ionizable Amphiphiles Based on Dihexadecyl Ester of L-Glutamic Acid for Liposomal Transport of RNA

G. A. Bukharin, U. A. Budanova, Z. G. Denieva, E. V. Dubrovin, Yu. L. Sebyakin
{"title":"Cationic and Ionizable Amphiphiles Based on Dihexadecyl Ester of L-Glutamic Acid for Liposomal Transport of RNA","authors":"G. A. Bukharin,&nbsp;U. A. Budanova,&nbsp;Z. G. Denieva,&nbsp;E. V. Dubrovin,&nbsp;Yu. L. Sebyakin","doi":"10.1134/S1990747824700314","DOIUrl":null,"url":null,"abstract":"<p>Various RNAs are among the most promising and actively developed therapeutic agents for the treatment of tumors, infectious diseases and a number of other pathologies associated with the dysfunction of specific genes. Some nanocarriers are used for the effective delivery of RNAs to target cells, including liposomes based on cationic and/or ionizable amphiphiles. Cationic amphiphiles contain a protonated amino group and exist as salts in an aqueous environment. Ionizable amphiphiles are a new generation of cationic lipids that exhibit reduced toxicity and immunogenicity and undergo ionization only in the acidic environment of the cell. In this work we developed a scheme for the preparation and carried out the synthesis of new cationic and ionizable amphiphiles based on natural amino acids (<i>L</i>-glutamic acid, glycine, β-alanine, and γ-aminobutyric acid). Cationic and ionizable liposomes were formed based on the obtained compounds, mixed with natural lipids (phosphatidylcholine and cholesterol), and their physicochemical characteristics (particle size, zeta potential, and storage stability) were determined. Average diameter of particles stable for 5–7 days did not exceed 100 nm. Zeta potential of cationic and ionizable liposomes was about 30 and 1 mV, respectively. The liposomal particles were used to form complexes with RNA molecules. Such RNA complexes were characterized by atomic force microscopy and their applicability for nucleic acid transport was determined.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 4","pages":"313 - 323"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","FirstCategoryId":"2","ListUrlMain":"https://link.springer.com/article/10.1134/S1990747824700314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Various RNAs are among the most promising and actively developed therapeutic agents for the treatment of tumors, infectious diseases and a number of other pathologies associated with the dysfunction of specific genes. Some nanocarriers are used for the effective delivery of RNAs to target cells, including liposomes based on cationic and/or ionizable amphiphiles. Cationic amphiphiles contain a protonated amino group and exist as salts in an aqueous environment. Ionizable amphiphiles are a new generation of cationic lipids that exhibit reduced toxicity and immunogenicity and undergo ionization only in the acidic environment of the cell. In this work we developed a scheme for the preparation and carried out the synthesis of new cationic and ionizable amphiphiles based on natural amino acids (L-glutamic acid, glycine, β-alanine, and γ-aminobutyric acid). Cationic and ionizable liposomes were formed based on the obtained compounds, mixed with natural lipids (phosphatidylcholine and cholesterol), and their physicochemical characteristics (particle size, zeta potential, and storage stability) were determined. Average diameter of particles stable for 5–7 days did not exceed 100 nm. Zeta potential of cationic and ionizable liposomes was about 30 and 1 mV, respectively. The liposomal particles were used to form complexes with RNA molecules. Such RNA complexes were characterized by atomic force microscopy and their applicability for nucleic acid transport was determined.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于l -谷氨酸二十六基酯的阳离子和可电离两亲体用于RNA的脂质体运输
各种rna是最有希望和积极开发的治疗药物,用于治疗肿瘤、传染病和与特定基因功能障碍相关的许多其他病理。一些纳米载体被用于有效地将rna递送到靶细胞,包括基于阳离子和/或可电离两亲体的脂质体。阳离子两亲体含有质子化的氨基,在水环境中以盐的形式存在。可电离两亲体是新一代的阳离子脂质,具有降低毒性和免疫原性,仅在细胞的酸性环境中发生电离。在这项工作中,我们提出了一种基于天然氨基酸(l -谷氨酸、甘氨酸、β-丙氨酸和γ-氨基丁酸)的新型阳离子和可电离两亲化合物的制备方案并进行了合成。将获得的化合物与天然脂质(磷脂酰胆碱和胆固醇)混合,形成阳离子和电离脂质体,并测定其物理化学特性(粒径、zeta电位和储存稳定性)。稳定5-7天的颗粒平均直径不超过100 nm。阳离子脂质体和电离脂质体的Zeta电位分别约为30 mV和1 mV。脂质体颗粒被用来与RNA分子形成复合物。通过原子力显微镜对这些RNA复合物进行了表征,并确定了它们对核酸转运的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.40
自引率
0.00%
发文量
28
期刊介绍: Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology   is an international peer reviewed journal that publishes original articles on physical, chemical, and molecular mechanisms that underlie basic properties of biological membranes and mediate membrane-related cellular functions. The primary topics of the journal are membrane structure, mechanisms of membrane transport, bioenergetics and photobiology, intracellular signaling as well as membrane aspects of cell biology, immunology, and medicine. The journal is multidisciplinary and gives preference to those articles that employ a variety of experimental approaches, basically in biophysics but also in biochemistry, cytology, and molecular biology. The journal publishes articles that strive for unveiling membrane and cellular functions through innovative theoretical models and computer simulations.
期刊最新文献
Approach for Analysis of Intracellular Markers in Phosphatidylserine-Positive Platelets Interaction of Albumin with Angiotensin-I-Converting Enzyme According to Molecular Modeling Data Cationic and Ionizable Amphiphiles Based on Dihexadecyl Ester of L-Glutamic Acid for Liposomal Transport of RNA Oxygenic Photosynthesis: Induction of Chlorophyll a Fluorescence and Regulation of Electron Transport in Thylakoid Membranes In Silico Comparison of Spontaneous and Evoked Activity of CA1 Pyramidal Cells and Dentate Gyrus Granule Cells of the Hippocampus at an Increased Extracellular Potassium Concentration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1