{"title":"A systematic review for transformer-based long-term series forecasting","authors":"Liyilei Su, Xumin Zuo, Rui Li, Xin Wang, Heng Zhao, Bingding Huang","doi":"10.1007/s10462-024-11044-2","DOIUrl":null,"url":null,"abstract":"<div><p>The emergence of deep learning has yielded noteworthy advancements in time series forecasting (TSF). Transformer architectures have witnessed broad utilization and adoption in TSF tasks. Transformers have proven to be the most successful solution to extract the semantic correlations among the elements within a long sequence. Various variants have enabled Transformer architecture to effectively handle long-term time series forecasting (LTSF) tasks. In this article, we first present a comprehensive overview of Transformer architectures and their subsequent enhancements developed to address various LTSF tasks. Then, we summarize the publicly available LTSF datasets and relevant evaluation metrics. Furthermore, we provide valuable insights into the best practices and techniques for effectively training Transformers in the context of time-series analysis. Lastly, we propose potential research directions in this rapidly evolving field.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 3","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-11044-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-11044-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The emergence of deep learning has yielded noteworthy advancements in time series forecasting (TSF). Transformer architectures have witnessed broad utilization and adoption in TSF tasks. Transformers have proven to be the most successful solution to extract the semantic correlations among the elements within a long sequence. Various variants have enabled Transformer architecture to effectively handle long-term time series forecasting (LTSF) tasks. In this article, we first present a comprehensive overview of Transformer architectures and their subsequent enhancements developed to address various LTSF tasks. Then, we summarize the publicly available LTSF datasets and relevant evaluation metrics. Furthermore, we provide valuable insights into the best practices and techniques for effectively training Transformers in the context of time-series analysis. Lastly, we propose potential research directions in this rapidly evolving field.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.