{"title":"Properties of the wormhole model in de Rham–Gabadadze–Tolley like massive gravity with specific matter density","authors":"Piyali Bhar","doi":"10.1140/epjc/s10052-024-13670-0","DOIUrl":null,"url":null,"abstract":"<div><p>In the conventional method of studying wormhole (WH) geometry, traversability requires the presence of exotic matter, which also provides negative gravity effects to keep the wormhole throat open. In de Rham–Gabadadze–Tolley (dRGT) massive gravity theory, we produce two types of WH solutions in our present paper. We obtain the field equations for exact WH solutions by selecting a static and spherically symmetric metric for the background geometry. We derive the WH geometry completely for the two different choices of redshift functions. The obtained WH solutions violate all the energy conditions, including the null energy condition (NEC). Various plots are used to illustrate the behavior of the wormhole for a suitable range of <span>\\(m^2c_1\\)</span>, where <i>m</i> is the graviton mass. It is observed that the photon deflection angle becomes negative for all values of <span>\\(m^2c_1\\)</span> as a result of the repulsive action of gravity. It is also shown that the repulsive impact of massive gravitons pushes the spacetime geometry so strongly that the asymptotic flatness is affected. The volume integral quantifier (VIQ) is computed to determine the amounts of matter that violate the null energy condition. The complexity factor of the proposed model is also discussed.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"85 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13670-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13670-0","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
In the conventional method of studying wormhole (WH) geometry, traversability requires the presence of exotic matter, which also provides negative gravity effects to keep the wormhole throat open. In de Rham–Gabadadze–Tolley (dRGT) massive gravity theory, we produce two types of WH solutions in our present paper. We obtain the field equations for exact WH solutions by selecting a static and spherically symmetric metric for the background geometry. We derive the WH geometry completely for the two different choices of redshift functions. The obtained WH solutions violate all the energy conditions, including the null energy condition (NEC). Various plots are used to illustrate the behavior of the wormhole for a suitable range of \(m^2c_1\), where m is the graviton mass. It is observed that the photon deflection angle becomes negative for all values of \(m^2c_1\) as a result of the repulsive action of gravity. It is also shown that the repulsive impact of massive gravitons pushes the spacetime geometry so strongly that the asymptotic flatness is affected. The volume integral quantifier (VIQ) is computed to determine the amounts of matter that violate the null energy condition. The complexity factor of the proposed model is also discussed.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.