Integrated HPLC, pharmacodynamics, and immunoprofiling to explore active components and mechanism of Zhi Bai Heye Fang on glycolipid metabolic disorders in mice.
Yao Li, Yun-Yuan Tian, Qian Yang, Xu Yang, Juan Wang, Meng-Meng Zhang, Yan-Hua Xie, Jie Li, Xu-Fang Wang, Si-Wang Wang
{"title":"Integrated HPLC, pharmacodynamics, and immunoprofiling to explore active components and mechanism of Zhi Bai Heye Fang on glycolipid metabolic disorders in mice.","authors":"Yao Li, Yun-Yuan Tian, Qian Yang, Xu Yang, Juan Wang, Meng-Meng Zhang, Yan-Hua Xie, Jie Li, Xu-Fang Wang, Si-Wang Wang","doi":"10.1016/j.jchromb.2024.124446","DOIUrl":null,"url":null,"abstract":"<p><p>Zhi Bai Heye Fang (AR-PCC-NF) exerts a positive effect on glycolipid metabolic disorders in the clinical setting; however, its efficacy components and mechanisms of action remain unclear. Glycolipid metabolic disorders in mice were used to evaluate the therapeutic effects of AR-PCC-NF and its individual components, and the chemical components of AR-PCC-NF were detected by HPLC. An insulin-resistant cell model was then treated with 12 biological components in vitro, and seven candidate active components were administered to mice with glycolipid metabolic disorders to investigate the efficacy and mechanism of AR-PCC-NF. AR-PCC-NF improved glucolipid metabolism more effectively than did the individual components. The protein expression of INSR and GLUT4 was elevated, and FOXO1 expression and impaired mitochondrial debris in the liver were reduced by AR-PCC-NF. Furthermore, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine improved glucose consumption or T-CHO in vitro. Interestingly, in vivo, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine partially improved abnormal glucolipid metabolism in mice when used separately, but the effects were equivalent to those of AR-PCC-NF when the seven active components were used in combination. Moreover, AR-PCC-NF and its efficacy components upregulated the protein expression of p-AMPK/AMPK and PGC-1α, decreased the levels PPARα, and reduced mitochondrial debris in the liver. In conclusion, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine are the main active components of AR-PCC-NF in the treatment of glycolipid metabolic diseases, and the mechanism is related to the regulation of the AMPK/PGC-1α.</p>","PeriodicalId":348,"journal":{"name":"Journal of Chromatography B","volume":"1252 ","pages":"124446"},"PeriodicalIF":2.8000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chromatography B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1016/j.jchromb.2024.124446","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Zhi Bai Heye Fang (AR-PCC-NF) exerts a positive effect on glycolipid metabolic disorders in the clinical setting; however, its efficacy components and mechanisms of action remain unclear. Glycolipid metabolic disorders in mice were used to evaluate the therapeutic effects of AR-PCC-NF and its individual components, and the chemical components of AR-PCC-NF were detected by HPLC. An insulin-resistant cell model was then treated with 12 biological components in vitro, and seven candidate active components were administered to mice with glycolipid metabolic disorders to investigate the efficacy and mechanism of AR-PCC-NF. AR-PCC-NF improved glucolipid metabolism more effectively than did the individual components. The protein expression of INSR and GLUT4 was elevated, and FOXO1 expression and impaired mitochondrial debris in the liver were reduced by AR-PCC-NF. Furthermore, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine improved glucose consumption or T-CHO in vitro. Interestingly, in vivo, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine partially improved abnormal glucolipid metabolism in mice when used separately, but the effects were equivalent to those of AR-PCC-NF when the seven active components were used in combination. Moreover, AR-PCC-NF and its efficacy components upregulated the protein expression of p-AMPK/AMPK and PGC-1α, decreased the levels PPARα, and reduced mitochondrial debris in the liver. In conclusion, neomangiferin, chlorogenic acid, isomangiferin, 2-hydroxy-1-methoxyaporphine, hyperoside, nuciferine, and berberine are the main active components of AR-PCC-NF in the treatment of glycolipid metabolic diseases, and the mechanism is related to the regulation of the AMPK/PGC-1α.
期刊介绍:
The Journal of Chromatography B publishes papers on developments in separation science relevant to biology and biomedical research including both fundamental advances and applications. Analytical techniques which may be considered include the various facets of chromatography, electrophoresis and related methods, affinity and immunoaffinity-based methodologies, hyphenated and other multi-dimensional techniques, and microanalytical approaches. The journal also considers articles reporting developments in sample preparation, detection techniques including mass spectrometry, and data handling and analysis.
Developments related to preparative separations for the isolation and purification of components of biological systems may be published, including chromatographic and electrophoretic methods, affinity separations, field flow fractionation and other preparative approaches.
Applications to the analysis of biological systems and samples will be considered when the analytical science contains a significant element of novelty, e.g. a new approach to the separation of a compound, novel combination of analytical techniques, or significantly improved analytical performance.