Investigation and Characterization of Eco-Technological Synthesis of Spherical TiO2 Nanoparticles from Thalassia hemprichi and Analysis of Biomedical Properties.
Velmani Sundar, Silambarasan Tamil Selvan, Arularasu M V, Maruthupandian Arumugam, Santhosh Chinnaraj
{"title":"Investigation and Characterization of Eco-Technological Synthesis of Spherical TiO<sub>2</sub> Nanoparticles from Thalassia hemprichi and Analysis of Biomedical Properties.","authors":"Velmani Sundar, Silambarasan Tamil Selvan, Arularasu M V, Maruthupandian Arumugam, Santhosh Chinnaraj","doi":"10.1007/s12010-024-05143-7","DOIUrl":null,"url":null,"abstract":"<p><p>In this present investigation, plant-mediated synthesis of titanium oxide (TiO<sub>2</sub>) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO<sub>2</sub> nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO<sub>2</sub> nanoparticles were observed in various sizes, viz., 50 nm and 78 nm. The XRD analysis revealed that TiO<sub>2</sub> nanoparticles have a body-centred cubic structure without a secondary phase. Green synthesized TiO<sub>2</sub> nanoparticle applications were studied against the antimicrobial, antioxidant, anticancer, and photocatalytic activity. The pathogenic bacterial strains, including Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa, were tested against TiO<sub>2</sub> nanoparticles; the maximum level of activity was seen at a concentration of 50 µg/mL. The antioxidant assays were performed against TiO<sub>2</sub> nanoparticles, and inhibitory concentration values (IC<sub>50</sub>) were 40.28 μg/mL of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 52.04 µg/mL of the acrylamide tertiary butyl sulfonic acid (ATBS) assay, and 16.91 µg/mL of the metal chelating assay. The anticancer activity was analyzed against MCF-7 cancer cells using TiO<sub>2</sub> nanoparticles, and the IC<sub>50</sub> value showed 64.14 µg/mL concentration. An eco-friendly and convenient method was formulated for the production of titanium oxide nanoparticles utilizing seagrass extract. The potential employment of TiO<sub>2</sub> involves water treatment, biomedicine, biosensors, and nanotechnology.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05143-7","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this present investigation, plant-mediated synthesis of titanium oxide (TiO2) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO2 nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO2 nanoparticles were observed in various sizes, viz., 50 nm and 78 nm. The XRD analysis revealed that TiO2 nanoparticles have a body-centred cubic structure without a secondary phase. Green synthesized TiO2 nanoparticle applications were studied against the antimicrobial, antioxidant, anticancer, and photocatalytic activity. The pathogenic bacterial strains, including Staphylococcus epidermidis, Staphylococcus aureus, Klebsiella pneumonia, and Pseudomonas aeruginosa, were tested against TiO2 nanoparticles; the maximum level of activity was seen at a concentration of 50 µg/mL. The antioxidant assays were performed against TiO2 nanoparticles, and inhibitory concentration values (IC50) were 40.28 μg/mL of the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, 52.04 µg/mL of the acrylamide tertiary butyl sulfonic acid (ATBS) assay, and 16.91 µg/mL of the metal chelating assay. The anticancer activity was analyzed against MCF-7 cancer cells using TiO2 nanoparticles, and the IC50 value showed 64.14 µg/mL concentration. An eco-friendly and convenient method was formulated for the production of titanium oxide nanoparticles utilizing seagrass extract. The potential employment of TiO2 involves water treatment, biomedicine, biosensors, and nanotechnology.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.