Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.

Q1 Biochemistry, Genetics and Molecular Biology Advances in biological regulation Pub Date : 2024-12-24 DOI:10.1016/j.jbior.2024.101072
Anniina Virtanen, Vivian Kettunen, Kirsikka Musta, Veera Räkköläinen, Stefan Knapp, Teemu Haikarainen, Olli Silvennoinen
{"title":"Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target.","authors":"Anniina Virtanen, Vivian Kettunen, Kirsikka Musta, Veera Räkköläinen, Stefan Knapp, Teemu Haikarainen, Olli Silvennoinen","doi":"10.1016/j.jbior.2024.101072","DOIUrl":null,"url":null,"abstract":"<p><p>Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.</p>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":" ","pages":"101072"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in biological regulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jbior.2024.101072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Janus kinases (JAK1-3, TYK2) are critical mediators of cytokine signaling and their role in hematological and inflammatory and autoimmune diseases has sparked widespread interest in their therapeutic targeting. JAKs have unique tandem kinase structure consisting of an active tyrosine kinase domain adjacent to a pseudokinase domain that is a hotspot for pathogenic mutations. The development of JAK inhibitors has focused on the active kinase domain and the developed drugs have demonstrated good clinical efficacy but due to off-target inhibition cause also side-effects and carry a black box warning limiting their use. Our understanding of the regulatory function of the pseudokinase domain in physiological and pathological signaling has improved substantially. The pseudokinase domain maintains the inactive state of JAKs in the absence of cytokine stimulation but it has also a key role in physiological and mutation-driven activation process. Furthermore, the pseudokinase domain has favourable structural characteristics for selective targeting of cytokine signaling, such as unique mode of ATP-binding, and the first pseudokinase targeting inhibitor for TYK2 has been approved for clinical use. Here we describe the recent functional and structural knowledge of JAK signaling and their therapeutic targeting, and present data evaluating the druggability of the JAK3 pseudokinase domain.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in biological regulation
Advances in biological regulation Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
8.90
自引率
0.00%
发文量
41
审稿时长
17 days
期刊最新文献
Insights into phosphatidic acid phosphatase and its potential role as a therapeutic target. Molecular basis of JAK kinase regulation guiding therapeutic approaches: Evaluating the JAK3 pseudokinase domain as a drug target. Tissue specific roles of fatty acid oxidation. Signaling pathways and bone marrow microenvironment in myelodysplastic neoplasms. Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1