首页 > 最新文献

Advances in biological regulation最新文献

英文 中文
Characterisation of molecular mechanisms for PLCγ2 disease-linked variants. PLCγ2 疾病相关变体的分子机制特征。
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-09-19 DOI: 10.1016/j.jbior.2024.101053
Tom D Bunney, Charis Kampyli, Ashley Gregory, Matilda Katan

The phospholipase C enzyme PLCγ2 is best characterised in the context of immune cell regulation. Furthermore, many mutations discovered in PLCγ2 have been linked to the development of complex immune disorders as well as resistance to ibrutinib treatment in chronic lymphocytic leukaemia. Importantly, it has also been found that a rare variant of PLCγ2 (P522R) has a protective role in Alzheimer's disease (AD). Despite initial characterisation of these disease-linked variants, a comprehensive understanding of their differences and underpinning molecular mechanisms, needed to facilitate therapeutic efforts, is lacking. Here, we used available structural insights for PLCγ enzymes to further analyse PLCγ2 M1141K mutation, representative for mutations in immune disorders and cancer resistance, and the AD-protective variant, PLCγ2 P522R. Together with several other mutations in the autoinhibitory interface, the PLCγ2 M1141K mutation was strongly activating in a cell-based assay, under basal and stimulated conditions. Measurements of PLC activity in various in vitro assays demonstrated enhanced activity of PLCγ2 M1141K while the activity of PLCγ2 P522R was not significantly different from the WT. Similar trends were observed in several other assays, including direct liposome binding. However, an enhanced rate of phosphorylation of a functionally important tyrosine by Btk in vitro was observed for PLCγ2 P522R variants. To further assess implications of these in vitro findings in a cellular context relevant for the PLCγ2 P522R variant, microglia (BV2) stable cell lines were generated and analysed under growth conditions. The PLC activity in cells expressing PLCγ2 P522R at physiologically relevant levels was clearly enhanced compared to the WT, and differences in cell morphology observed. These data, combined with the structural insights, suggest that the PLCγ2 P522R variant has subtle, localised structural changes that do not directly affect the PLC activity by compromising autoinhibition, as determined for PLCγ2 M1141K. It is also likely that in contrast to the PLCγ2 M1141K, the functional impact of the P522R substitution completely depends on further interactions with upstream kinases and other regulatory proteins in a relevant cellular context, where changes in the PLCγ2 P522R variant could facilitate processes such as phosphorylation and protein-protein interactions.

磷脂酶C酶PLCγ2在免疫细胞调控方面的特征最为明显。此外,在 PLCγ2 中发现的许多突变都与复杂免疫疾病的发生以及慢性淋巴细胞白血病患者对伊布替尼治疗的耐药性有关。重要的是,人们还发现 PLCγ2 的一种罕见变体(P522R)在阿尔茨海默病(AD)中具有保护作用。尽管对这些与疾病相关的变体进行了初步定性,但仍缺乏对它们的差异和基础分子机制的全面了解,而这正是促进治疗工作所需要的。在这里,我们利用对 PLCγ 酶结构的现有了解,进一步分析了 PLCγ2 M1141K 突变(免疫紊乱和抗癌突变的代表)和 AD 保护变体 PLCγ2 P522R。PLCγ2 M1141K 突变与自身抑制界面上的其他几个突变一起,在基于细胞的试验中,在基础和刺激条件下都具有强烈的激活作用。在各种体外试验中对 PLC 活性的测量表明,PLCγ2 M1141K 的活性增强了,而 PLCγ2 P522R 的活性与 WT 没有显著差异。在其他几项检测中也观察到类似的趋势,包括直接脂质体结合。不过,体外观察到 PLCγ2 P522R 变体提高了 Btk 对一个功能重要的酪氨酸的磷酸化率。为了进一步评估这些体外研究结果在与 PLCγ2 P522R 变体相关的细胞环境中的影响,我们生成了小胶质细胞(BV2)稳定细胞系,并在生长条件下进行了分析。与 WT 相比,表达 PLCγ2 P522R 的细胞在生理相关水平上的 PLC 活性明显增强,细胞形态也出现差异。这些数据以及对结构的深入研究表明,PLCγ2 P522R 变体具有微妙的局部结构变化,不会像 PLCγ2 M1141K 所确定的那样,通过损害自身抑制作用而直接影响 PLC 活性。此外,与 PLCγ2 M1141K 不同的是,P522R 取代的功能影响可能完全取决于在相关细胞环境中与上游激酶和其他调节蛋白的进一步相互作用,在这种环境中,PLCγ2 P522R 变体的变化可能会促进磷酸化和蛋白质-蛋白质相互作用等过程。
{"title":"Characterisation of molecular mechanisms for PLCγ2 disease-linked variants.","authors":"Tom D Bunney, Charis Kampyli, Ashley Gregory, Matilda Katan","doi":"10.1016/j.jbior.2024.101053","DOIUrl":"https://doi.org/10.1016/j.jbior.2024.101053","url":null,"abstract":"<p><p>The phospholipase C enzyme PLCγ2 is best characterised in the context of immune cell regulation. Furthermore, many mutations discovered in PLCγ2 have been linked to the development of complex immune disorders as well as resistance to ibrutinib treatment in chronic lymphocytic leukaemia. Importantly, it has also been found that a rare variant of PLCγ2 (P522R) has a protective role in Alzheimer's disease (AD). Despite initial characterisation of these disease-linked variants, a comprehensive understanding of their differences and underpinning molecular mechanisms, needed to facilitate therapeutic efforts, is lacking. Here, we used available structural insights for PLCγ enzymes to further analyse PLCγ2 M1141K mutation, representative for mutations in immune disorders and cancer resistance, and the AD-protective variant, PLCγ2 P522R. Together with several other mutations in the autoinhibitory interface, the PLCγ2 M1141K mutation was strongly activating in a cell-based assay, under basal and stimulated conditions. Measurements of PLC activity in various in vitro assays demonstrated enhanced activity of PLCγ2 M1141K while the activity of PLCγ2 P522R was not significantly different from the WT. Similar trends were observed in several other assays, including direct liposome binding. However, an enhanced rate of phosphorylation of a functionally important tyrosine by Btk in vitro was observed for PLCγ2 P522R variants. To further assess implications of these in vitro findings in a cellular context relevant for the PLCγ2 P522R variant, microglia (BV2) stable cell lines were generated and analysed under growth conditions. The PLC activity in cells expressing PLCγ2 P522R at physiologically relevant levels was clearly enhanced compared to the WT, and differences in cell morphology observed. These data, combined with the structural insights, suggest that the PLCγ2 P522R variant has subtle, localised structural changes that do not directly affect the PLC activity by compromising autoinhibition, as determined for PLCγ2 M1141K. It is also likely that in contrast to the PLCγ2 M1141K, the functional impact of the P522R substitution completely depends on further interactions with upstream kinases and other regulatory proteins in a relevant cellular context, where changes in the PLCγ2 P522R variant could facilitate processes such as phosphorylation and protein-protein interactions.</p>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142306937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Label-free live characterization of mesenchymal stem cell spheroids by biophysical properties measurement 通过生物物理特性测量对间充质干细胞球体进行无标记活表征
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-09-12 DOI: 10.1016/j.jbior.2024.101052

Three-dimensional (3D) cell culture has become a consolidated method in the stem cell field, where mesenchymal stromal stem cells (MSCs) can be used to generate in vitro spheroid aggregates called MSC-Spheroids (MSph). MSph is a floating cluster of stem cells similar to those in literature are known as bone marrow-derived “mesenspheres”. Even though MSC properties are shared by MSph, depending on the cell type and their tissue source, the morphology and degree of compaction of the MSph can be variable, creating limitations in such a cell model. Thus, during culture, a variation in stem cell functionality and viability, in addition to the suitability for comparing MSph in some experimental protocols, can be affected by spheroid biophysical intrinsic properties like mass density. To investigate this limitation and provide a new method for researchers, MSph of seven different tissue sources were compared by combining mass density, weight, and size evaluations with viability assays for ATP measurement. MSph cultured in traditional static conditions showed decreased in viability over the days of culture, while mass density exhibited different trends among cell types. Additionally, treatment of MSph with a non-toxic concentration of a natural compound cell regulator, such as plumbagin, altered the mass density of a selected cell type, thereby confirming the efficacy of the biophysical approach in monitoring MSph variability post-treatment. The results encourage using MSph in the early days of culture after their formation to ensure viability and likely retention of the stem cell phenotype.

三维(3D)细胞培养已成为干细胞领域的一种综合方法,间充质基质干细胞(MSCs)可用于在体外生成称为间充质干细胞球状聚集体(MSC-Spheroids,MSph)的球状聚集体。MSph是干细胞的漂浮团块,类似于文献中所说的骨髓来源的 "间质球"。尽管MSph具有间充质干细胞的共同特性,但根据细胞类型及其组织来源,MSph的形态和压实程度可能会发生变化,从而对这种细胞模型造成限制。因此,在培养过程中,干细胞功能和存活率的变化,以及在某些实验方案中比较MSph的适用性,都会受到质量密度等球状生物物理内在特性的影响。为了研究这一局限性并为研究人员提供一种新方法,研究人员将质量密度、重量和大小评估与ATP测量的活力测定相结合,对七种不同组织来源的MSph进行了比较。在传统静态条件下培养的 MSph 的活力随着培养天数的增加而下降,而不同类型细胞的质量密度则呈现出不同的趋势。此外,用无毒浓度的天然复合细胞调节剂(如 Plumbagin)处理 MSph,可改变所选细胞类型的质量密度,从而证实了生物物理方法在监测 MSph 处理后变化方面的功效。研究结果鼓励在MSph形成后的早期培养阶段使用MSph,以确保其活力和干细胞表型的可能保留。
{"title":"Label-free live characterization of mesenchymal stem cell spheroids by biophysical properties measurement","authors":"","doi":"10.1016/j.jbior.2024.101052","DOIUrl":"10.1016/j.jbior.2024.101052","url":null,"abstract":"<div><p>Three-dimensional (3D) cell culture has become a consolidated method in the stem cell field, where mesenchymal stromal stem cells (MSCs) can be used to generate <em>in vitro</em> spheroid aggregates called MSC-Spheroids (MSph). MSph is a floating cluster of stem cells similar to those in literature are known as bone marrow-derived “mesenspheres”. Even though MSC properties are shared by MSph, depending on the cell type and their tissue source, the morphology and degree of compaction of the MSph can be variable, creating limitations in such a cell model. Thus, during culture, a variation in stem cell functionality and viability, in addition to the suitability for comparing MSph in some experimental protocols, can be affected by spheroid biophysical intrinsic properties like mass density. To investigate this limitation and provide a new method for researchers, MSph of seven different tissue sources were compared by combining mass density, weight, and size evaluations with viability assays for ATP measurement. MSph cultured in traditional static conditions showed decreased in viability over the days of culture, while mass density exhibited different trends among cell types. Additionally, treatment of MSph with a non-toxic concentration of a natural compound cell regulator, such as plumbagin, altered the mass density of a selected cell type, thereby confirming the efficacy of the biophysical approach in monitoring MSph variability post-treatment. The results encourage using MSph in the early days of culture after their formation to ensure viability and likely retention of the stem cell phenotype.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221249262400040X/pdfft?md5=36840907f04b93a185dcc4f92bc58052&pid=1-s2.0-S221249262400040X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142240244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Epigenetic modulation of immune cells: Mechanisms and implications 免疫细胞的表观遗传调节:机制与影响
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-08-10 DOI: 10.1016/j.jbior.2024.101043
Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.
免疫反应的表观遗传调控包括不改变 DNA 序列的可改变和可遗传的改变。虽然对肿瘤细胞的表观遗传学变化已有许多研究,但现在人们越来越关注先天性和适应性系统免疫细胞中由表观遗传学介导的变化。这些变化对机体对肿瘤的反应和潜在治疗疫苗的开发都有重大影响。本研究主要讨论关键的表观遗传学改变,特别强调假酸化以及非编码 RNA 及其转运,这些改变可导致癌症的发生和免疫细胞获得新的表型特征。此外,还将概述针对肿瘤的治疗性疫苗的进展。
{"title":"Epigenetic modulation of immune cells: Mechanisms and implications","authors":"","doi":"10.1016/j.jbior.2024.101043","DOIUrl":"10.1016/j.jbior.2024.101043","url":null,"abstract":"<div><div>Epigenetic modulation of the immune response entails modifiable and inheritable modifications that do not modify the DNA sequence. While there have been many studies on epigenetic changes in tumor cells, there is now a growing focus on epigenetically mediated changes in immune cells of both the innate and adaptive systems. These changes have significant implications for both the body's response to tumors and the development of potential therapeutic vaccines. This study primarily discusses the key epigenetic alterations, with a specific emphasis on pseudouridination, as well as non-coding RNAs and their transportation, which can lead to the development of cancer and the acquisition of new phenotypic traits by immune cells. Furthermore, the advancement of therapeutic vaccinations targeting the tumor will be outlined.</div></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142278750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of cellular ATP levels on cell viability in response to fluorouracil through lysophosphatidic acid (LPA) receptor-4 (LPA4) and LPA6 in colon cancer cells 结肠癌细胞通过溶血磷脂酸 (LPA) 受体-4 (LPA4) 和 LPA6 对氟尿嘧啶反应中细胞 ATP 水平对细胞活力的影响
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-07-16 DOI: 10.1016/j.jbior.2024.101042

Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA1 to LPA6) mediates various aspects of cancer cell behaviors. This study aimed to investigate the variation in intracellular ATP levels and its impact on cell viability in response to fluorouracil (5-FU) through LPA4 and LPA6 in colon cancer DLD-1 cells. LPA4 and LPA6 are linked to Gs and Gi proteins. Gs protein stimulates the activity of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP, whereas Gi protein inhibits this activity. In cell survival assay, cells were treated with 5-FU every 24 h for 3 days. The viability in response to 5-FU in DLD-1 cells was enhanced by LPA4 and LPA6 knockdowns. Furthermore, LPA4 and LPA6 knockdowns reduced the expression of cleaved-PARP1 protein when cells were treated with 5-FU. Since ethidium bromide (EtBr) reduces mitochondrial DNA level in cultured cells, EtBr-treated (DLD-EtBr) cells were generated from DLD-1 cells. The viability to 5-FU in DLD-EtBr cells was higher than that of DLD-1 cells. Additionally, culturing DLD-1 cells in a low glucose-containing medium led to increased viability to 5-FU. LPAR4 and LPAR6 expressions were reduced in both DLD-EtBr and low glucose-treated cells. The cellular ATP levels were significantly decreased in DLD-1 cells following EtBr treatment and exposure to low glucose conditions. Conversely, in the presence of LPA, LPA4 and LPA6 knockdowns resulted in a marked elevation of ATP levels. These results suggest that cell viability to 5-FU is negatively regulated via the activation of LPA4-and LPA6-Gs protein pathways in DLD-1 cells rather than Gi protein.

溶血磷脂酸(LPA)信号通过 LPA 受体(LPA1 至 LPA6)介导癌细胞行为的各个方面。本研究旨在调查结肠癌 DLD-1 细胞通过 LPA4 和 LPA6 对氟尿嘧啶(5-FU)反应时细胞内 ATP 水平的变化及其对细胞活力的影响。LPA4 和 LPA6 与 Gs 和 Gi 蛋白有关。Gs 蛋白刺激腺苷酸环化酶的活性,腺苷酸环化酶催化 ATP 转化为 cAMP,而 Gi 蛋白则抑制腺苷酸环化酶的活性。在细胞存活试验中,每 24 小时用 5-FU 处理细胞 3 天。敲除 LPA4 和 LPA6 可提高 DLD-1 细胞对 5-FU 的存活率。此外,敲除 LPA4 和 LPA6 能降低细胞在 5-FU 处理下的裂解-PARP1 蛋白的表达。由于溴化乙锭(EtBr)会降低培养细胞中线粒体DNA的水平,因此从DLD-1细胞中产生了经EtBr处理的细胞(DLD-EtBr)。DLD-EtBr 细胞对 5-FU 的存活率高于 DLD-1 细胞。此外,在含低葡萄糖的培养基中培养 DLD-1 细胞可提高其对 5-FU 的存活率。DLD-EtBr和低糖处理的细胞中LPAR4和LPAR6的表达量都有所下降。在 EtBr 处理和暴露于低葡萄糖条件下后,DLD-1 细胞中的细胞 ATP 水平明显下降。相反,在 LPA 存在的情况下,LPA4 和 LPA6 基因敲除导致 ATP 水平明显升高。这些结果表明,在DLD-1细胞中,细胞对5-FU的活力是通过激活LPA4和LPA6-Gs蛋白通路而不是Gi蛋白来负向调节的。
{"title":"Impact of cellular ATP levels on cell viability in response to fluorouracil through lysophosphatidic acid (LPA) receptor-4 (LPA4) and LPA6 in colon cancer cells","authors":"","doi":"10.1016/j.jbior.2024.101042","DOIUrl":"10.1016/j.jbior.2024.101042","url":null,"abstract":"<div><p>Lysophosphatidic acid (LPA) signaling via LPA receptors (LPA<sub>1</sub> to LPA<sub>6</sub>) mediates various aspects of cancer cell behaviors. This study aimed to investigate the variation in intracellular ATP levels and its impact on cell viability in response to fluorouracil (5-FU) through LPA<sub>4</sub> and LPA<sub>6</sub> in colon cancer DLD-1 cells. LPA<sub>4</sub> and LPA<sub>6</sub> are linked to Gs and Gi proteins. Gs protein stimulates the activity of adenylyl cyclase, which catalyzes the conversion of ATP to cAMP, whereas Gi protein inhibits this activity. In cell survival assay, cells were treated with 5-FU every 24 h for 3 days. The viability in response to 5-FU in DLD-1 cells was enhanced by LPA<sub>4</sub> and LPA<sub>6</sub> knockdowns. Furthermore, LPA<sub>4</sub> and LPA<sub>6</sub> knockdowns reduced the expression of cleaved-PARP1 protein when cells were treated with 5-FU. Since ethidium bromide (EtBr) reduces mitochondrial DNA level in cultured cells, EtBr-treated (DLD-EtBr) cells were generated from DLD-1 cells. The viability to 5-FU in DLD-EtBr cells was higher than that of DLD-1 cells. Additionally, culturing DLD-1 cells in a low glucose-containing medium led to increased viability to 5-FU. <em>LPAR4</em> and <em>LPAR6</em> expressions were reduced in both DLD-EtBr and low glucose-treated cells. The cellular ATP levels were significantly decreased in DLD-1 cells following EtBr treatment and exposure to low glucose conditions. Conversely, in the presence of LPA, LPA<sub>4</sub> and LPA<sub>6</sub> knockdowns resulted in a marked elevation of ATP levels. These results suggest that cell viability to 5-FU is negatively regulated via the activation of LPA<sub>4</sub>-and LPA<sub>6</sub>-Gs protein pathways in DLD-1 cells rather than Gi protein.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141639069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms 在揭示 ATAD3 蛋白在多细胞生物体中的基本功能方面取得的进展
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-06-18 DOI: 10.1016/j.jbior.2024.101041
Divya Goel , Sudhir Kumar

ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.

ATPase 家族 AAA 含域蛋白 3(俗称 ATAD3)是一种多用途线粒体蛋白,参与了大量途径。ATAD3 是一种横跨线粒体内膜和线粒体外膜的跨膜蛋白。因此,它是线粒体腔和内质网之间的连接纽带,有助于它们之间的交叉对话。ATAD3 的 N 端结构域具有两亲性,插入线粒体的膜空间,而 C 端结构域则位于线粒体腔内,包含 ATPase 结构域。已知 ATAD3 参与线粒体生物生成、胆固醇转运、激素合成、细胞凋亡和其他一些途径。它还被认为与癌症和许多神经系统疾病有关,因此是一个值得广泛研究的目标。本综述旨在全面介绍 ATAD3 在线粒体中的最新作用,尤其是在脂质转运、线粒体-内质网相互作用、癌症和抑制有丝分裂中的作用。
{"title":"Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms","authors":"Divya Goel ,&nbsp;Sudhir Kumar","doi":"10.1016/j.jbior.2024.101041","DOIUrl":"https://doi.org/10.1016/j.jbior.2024.101041","url":null,"abstract":"<div><p>ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141438616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding how receptor tyrosine kinases (RTKs) mediate nuclear calcium signaling 解码受体酪氨酸激酶(RTK)如何介导核钙信号转导
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-01 DOI: 10.1016/j.jbior.2024.101033
María José González Armijos, Thais Fernandes Bassani, Clara Couto Fernandez, Michele Angela Rodrigues , Dawidson Assis Gomes

Calcium (Ca2+) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca2+ signals play an essential role in determining their specificity. Ca2+ signaling patterns can differ in various cell regions, and Ca2+ signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca2+ signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca2+ signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.

钙(Ca2+)是一种用途广泛的细胞内信使,可调节多种细胞过程。虽然目前还不清楚单秒信使如何协调细胞内的各种效应,但越来越多的证据表明,Ca2+ 信号的空间模式在决定其特异性方面起着至关重要的作用。不同细胞区域的 Ca2+ 信号模式可能不同,而且已观察到细胞核和细胞质中的 Ca2+ 信号是独立发生的。细胞核内 Ca2+ 信号的启动和功能尚未完全明了。受体酪氨酸激酶(RTKs)可诱导钙离子信号,该信号由细胞核内磷脂酰肌醇 4,5-二磷酸(PIP2)水解和肌醇 1,4,5-三磷酸(InsP3)形成产生。这种信号机制可能是特定生长因子影响细胞增殖和基因转录的原因。本综述重点介绍了将 RTK 运送到细胞核的最新进展,并解释了这些受体如何启动核钙信号转导。
{"title":"Decoding how receptor tyrosine kinases (RTKs) mediate nuclear calcium signaling","authors":"María José González Armijos,&nbsp;Thais Fernandes Bassani,&nbsp;Clara Couto Fernandez,&nbsp;Michele Angela Rodrigues ,&nbsp;Dawidson Assis Gomes","doi":"10.1016/j.jbior.2024.101033","DOIUrl":"https://doi.org/10.1016/j.jbior.2024.101033","url":null,"abstract":"<div><p>Calcium (Ca<sup>2+</sup>) is a highly versatile intracellular messenger that regulates several cellular processes. Although it is unclear how a single-second messenger coordinates various effects within a cell, there is growing evidence that spatial patterns of Ca<sup>2+</sup> signals play an essential role in determining their specificity. Ca<sup>2+</sup> signaling patterns can differ in various cell regions, and Ca<sup>2+</sup> signals in the nuclear and cytoplasmic compartments have been observed to occur independently. The initiation and function of Ca<sup>2+</sup> signaling within the nucleus are not yet fully understood. Receptor tyrosine kinases (RTKs) induce Ca<sup>2+</sup> signaling resulting from phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and inositol 1,4,5-trisphosphate (InsP3) formation within the nucleus. This signaling mechanism may be responsible for the effects of specific growth factors on cell proliferation and gene transcription. This review highlights the recent advances in RTK trafficking to the nucleus and explains how these receptors initiate nuclear calcium signaling.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140914063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH 营养保健品小檗碱在治疗肝细胞癌和其他肝病(如非酒精性脂肪肝和非酒精性脂肪性肝病)方面的潜力。
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-05-01 DOI: 10.1016/j.jbior.2024.101032
Melchiorre Cervello , Giuseppa Augello , Lucio Cocco , Stefano Ratti , Matilde Y. Follo , Alberto M. Martelli , Antonella Cusimano , Giuseppe Montalto , James A. McCubrey

Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.

肝细胞癌(HCC)是一种常见的癌症,不幸的是,它的治疗效果很差。化疗和靶向治疗等常见抗癌疗法并没有显著提高患者的生存率。肝细胞癌患者的常见治疗方法是移植,但这种方法存在局限性和并发症。有必要采用新方法来更有效地治疗 HCC 患者。小檗碱(BBR)是一种从各种水果和树木中提取的营养保健品,几个世纪以来一直被传统医学用于治疗糖尿病和炎症等各种疾病。最近,人们研究了小檗碱在治疗各种癌症(尤其是结直肠癌)以及非酒精性脂肪肝(NAFLD)和非酒精性脂肪性肝炎(NASH)中的抗增殖作用。在本综述中,我们将重点讨论 BBR 治疗肝病的研究。
{"title":"The potential of the nutraceutical berberine in the treatment of hepatocellular carcinoma and other liver diseases such as NAFLD and NASH","authors":"Melchiorre Cervello ,&nbsp;Giuseppa Augello ,&nbsp;Lucio Cocco ,&nbsp;Stefano Ratti ,&nbsp;Matilde Y. Follo ,&nbsp;Alberto M. Martelli ,&nbsp;Antonella Cusimano ,&nbsp;Giuseppe Montalto ,&nbsp;James A. McCubrey","doi":"10.1016/j.jbior.2024.101032","DOIUrl":"10.1016/j.jbior.2024.101032","url":null,"abstract":"<div><p>Hepatocellular carcinoma (HCC) is a common cancer which unfortunately has poor outcomes. Common anti-cancer treatments such as chemotherapy and targeted therapy have not increased patient survival significantly. A common treatment for HCC patients is transplantation, however, it has limitations and complications. Novel approaches are necessary to more effectively treat HCC patients. Berberine (BBR) is a nutraceutical derived from various fruits and trees, which has been used for centuries in traditional medicine to treat various diseases such as diabetes and inflammation. More recently, the anti-proliferation effects of BBR have been investigated in the treatment of patients with various cancers, especially colorectal cancer, and in non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). In this review, we will focus on studies with BBR in liver diseases.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140781819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lysophosphatidic acid (LPA) receptor-mediated signaling and cellular responses to anticancer drugs and radiation of cancer cells 溶血磷脂酸(LPA)受体介导的信号传导以及细胞对抗癌药物和癌细胞辐射的反应
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-02-14 DOI: 10.1016/j.jbior.2024.101029
Hiroko Ikeda, Miwa Takai, Toshifumi Tsujiuchi

Lysophosphatidic acid (LPA) is a simple physiological lipid and structurally consists of a fatty, a phosphate and a glycerol. LPA binds to G protein-coupled LPA receptors (LPA1 to LPA6). LPA receptor-mediated signaling mediates a variety of biological responses, such as cell growth, migration, morphogenesis, differentiation and protection from apoptosis. It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancies. So far, genetic and epigenetic alterations of LPA receptors have been found in several cancer cells as well as abnormal LPA production. In addition, LPA receptor-mediated signaling regulates the promotion of malignant behaviors, including chemo- and/or radiation-resistance. Chemotherapy and radiotherapy are the common approaches to the treatments of cancers. However, resistance to anticancer drugs and irradiation is the most critical limitation for chemotherapy and radiotherapy. In this review, we provide the roles of LPA receptor-mediated signaling in the regulation of cellular responses induced by chemotherapeutic agents and irradiation and its biological utility as a possible molecular target for improving cancer cell responses to chemotherapy and radiotherapy.

溶血磷脂酸(LPA)是一种简单的生理脂质,结构上由脂肪、磷酸盐和甘油组成。LPA 与 G 蛋白偶联 LPA 受体(LPA1 至 LPA6)结合。LPA 受体介导的信号传导可介导多种生物反应,如细胞生长、迁移、形态发生、分化和防止细胞凋亡。人们认为,LPA 受体介导的信号在人类恶性肿瘤的发病机制中起着重要作用。迄今为止,已在多个癌细胞中发现 LPA 受体的遗传和表观遗传学改变,以及 LPA 的异常产生。此外,LPA 受体介导的信号传导调节恶性行为的发生,包括化疗和/或放射治疗的抗药性。化疗和放疗是治疗癌症的常用方法。然而,对抗癌药物和放射治疗的耐药性是化疗和放疗最关键的限制因素。在这篇综述中,我们将介绍 LPA 受体介导的信号传导在调节化疗药物和辐照诱导的细胞反应中的作用,以及它作为改善癌细胞对化疗和放疗反应的可能分子靶点的生物学效用。
{"title":"Lysophosphatidic acid (LPA) receptor-mediated signaling and cellular responses to anticancer drugs and radiation of cancer cells","authors":"Hiroko Ikeda,&nbsp;Miwa Takai,&nbsp;Toshifumi Tsujiuchi","doi":"10.1016/j.jbior.2024.101029","DOIUrl":"10.1016/j.jbior.2024.101029","url":null,"abstract":"<div><p>Lysophosphatidic acid (LPA) is a simple physiological lipid and structurally consists of a fatty, a phosphate and a glycerol. LPA binds to G protein-coupled LPA receptors (LPA<sub>1</sub> to LPA<sub>6</sub>). LPA receptor-mediated signaling mediates a variety of biological responses, such as cell growth, migration, morphogenesis, differentiation and protection from apoptosis. It is considered that LPA receptor-mediated signaling plays an important role in the pathogenesis of human malignancies. So far, genetic and epigenetic alterations of LPA receptors have been found in several cancer cells as well as abnormal LPA production. In addition, LPA receptor-mediated signaling regulates the promotion of malignant behaviors, including chemo- and/or radiation-resistance. Chemotherapy and radiotherapy are the common approaches to the treatments of cancers. However, resistance to anticancer drugs and irradiation is the most critical limitation for chemotherapy and radiotherapy. In this review, we provide the roles of LPA receptor-mediated signaling in the regulation of cellular responses induced by chemotherapeutic agents and irradiation and its biological utility as a possible molecular target for improving cancer cell responses to chemotherapy and radiotherapy.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139830187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new method for quantifying the enzyme activity of DGKs 量化 DGK 酶活性的新方法
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100998
Millie Xin Barbernitz , Daniel M. Raben

Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH). A common approach to examine the activity of these enzymes relys on a radiometric assay (Epand and Topham, 2007; Tu-Sekine and Raben, 2017). This assay quantifies the DGK-catalyzed incorporation of 32P into DAG from AT32P to generate 32PtdOH and is perhaps been the most widely used assay. While sensitive, its drawbacks are the expense and the potential negative impacts on health and the environment. In this report, we describe a new assay which utilizes fluorescent labeled NBD-DAG (1-Oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-Glycero-3-diacylglycerol) to quantify the DGK-θ-catalyzed conversion of NBD-DAG to NBD-PtdOH. Furthermore, we show the assay is sufficiently sensitive as the measured specific activity was similar to that previously determined with AT32P (Tu-Sekine and Raben, 2012) and was able to detect the activation of DGK-θ by synaptotagmin-1 (Barber et al., 2022). Overall, this assay is inexpensive, sensitive, and reproducible making it an attractive alternative to currently established assays.

二酰甘油激酶(DGKs)是催化二酰甘油(DAG)向磷脂酸(PtdOH)的 ATP 依赖性转化的酶家族。检测这些酶活性的常用方法是采用辐射测定法(Epand 和 Topham,2007 年;Tu-Sekine 和 Raben,2017 年)。这种检测方法量化 DGK 催化的 32P 从 AT32P 到 DAG 的掺入,生成 32PtdOH,可能是使用最广泛的检测方法。虽然灵敏度高,但其缺点是费用昂贵,而且可能对健康和环境造成负面影响。在本报告中,我们介绍了一种新的检测方法,它利用荧光标记的 NBD-DAG(1-油酰基-2-[12-[(7-硝基-2-1,3-苯并恶二唑-4-基)氨基]十二碳酰基]-sn-甘油-3-二酰甘油)来量化 DGK-θ 催化的 NBD-DAG 向 NBD-PtdOH 的转化。此外,我们还发现该检测方法具有足够的灵敏度,因为所测得的特异活性与之前用 AT32P 测定的结果相似(Tu-Sekine 和 Raben,2012 年),并且能够检测突触诱导素-1 对 DGK-θ 的激活(Barber 等人,2022 年)。总之,这种检测方法成本低廉、灵敏度高、可重复性好,是目前已有检测方法的一种有吸引力的替代方法。
{"title":"A new method for quantifying the enzyme activity of DGKs","authors":"Millie Xin Barbernitz ,&nbsp;Daniel M. Raben","doi":"10.1016/j.jbior.2023.100998","DOIUrl":"10.1016/j.jbior.2023.100998","url":null,"abstract":"<div><p>Diacylglycerol kinases (DGKs) are a family of enzymes that catalyze the ATP-dependent conversion of diacylglycerol (DAG) to phosphatidic acid (PtdOH). A common approach to examine the activity of these enzymes relys on a radiometric assay (Epand and Topham, 2007; Tu-Sekine and Raben, 2017). This assay quantifies the DGK-catalyzed incorporation of <sup>32</sup>P into DAG from AT<sup>32</sup>P to generate <sup>32</sup>PtdOH and is perhaps been the most widely used assay. While sensitive, its drawbacks are the expense and the potential negative impacts on health and the environment. In this report, we describe a new assay which utilizes fluorescent labeled NBD-DAG (1-Oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl) amino] dodecanoyl]-sn-Glycero-3-diacylglycerol) to quantify the DGK-θ-catalyzed conversion of NBD-DAG to NBD-PtdOH. Furthermore, we show the assay is sufficiently sensitive as the measured specific activity was similar to that previously determined with AT<sup>32</sup>P (Tu-Sekine and Raben, 2012) and was able to detect the activation of DGK-θ by synaptotagmin-1 (Barber et al., 2022). Overall, this assay is inexpensive, sensitive, and reproducible making it an attractive alternative to currently established assays.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135566034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biology of childhood hepatoblastoma and the search for novel treatments 儿童肝母细胞瘤生物学及新型治疗方法的探索
Q1 Biochemistry, Genetics and Molecular Biology Pub Date : 2024-01-01 DOI: 10.1016/j.jbior.2023.100997
Marjut Pihlajoki , Katja Eloranta , Ruth Nousiainen , Ville Väyrynen , Tea Soini , Antti Kyrönlahti , Seppo Parkkila , Jukka Kanerva , David B. Wilson , Mikko P. Pakarinen , Markku Heikinheimo

Our research laboratory has a longstanding interest in developmental disorders and embryonic tumors, and recent efforts have focused on the pathogenesis of pediatric liver tumors. This review focuses on hepatoblastoma (HB), the most common pediatric liver malignancy. Despite advances in treatment, patients with metastatic HB have a poor prognosis, and survivors often have permanent side effects attributable to chemotherapy. In an effort to improve survival and lessen long-term complications of HB, we have searched for novel molecular vulnerabilities using a combination of patient derived cell lines, metabolomics, and RNA sequencing of human samples at diagnosis and follow-up. These studies have shed light on pathogenesis and identified putative targets for future therapies in children with advanced HB.

我们的研究实验室长期关注发育障碍和胚胎肿瘤,最近的研究重点是小儿肝脏肿瘤的发病机制。本综述的重点是肝母细胞瘤(HB),它是最常见的小儿肝脏恶性肿瘤。尽管治疗手段不断进步,但转移性肝母细胞瘤患者的预后仍然很差,幸存者往往会因化疗而产生永久性副作用。为了提高HB患者的生存率并减少其长期并发症,我们结合患者衍生细胞系、代谢组学以及诊断和随访时人体样本的RNA测序,寻找新的分子漏洞。这些研究揭示了晚期 HB 儿童的发病机制,并确定了未来疗法的潜在靶点。
{"title":"Biology of childhood hepatoblastoma and the search for novel treatments","authors":"Marjut Pihlajoki ,&nbsp;Katja Eloranta ,&nbsp;Ruth Nousiainen ,&nbsp;Ville Väyrynen ,&nbsp;Tea Soini ,&nbsp;Antti Kyrönlahti ,&nbsp;Seppo Parkkila ,&nbsp;Jukka Kanerva ,&nbsp;David B. Wilson ,&nbsp;Mikko P. Pakarinen ,&nbsp;Markku Heikinheimo","doi":"10.1016/j.jbior.2023.100997","DOIUrl":"10.1016/j.jbior.2023.100997","url":null,"abstract":"<div><p>Our research laboratory has a longstanding interest in developmental disorders and embryonic tumors, and recent efforts have focused on the pathogenesis of pediatric liver tumors. This review focuses on hepatoblastoma (HB), the most common pediatric liver malignancy. Despite advances in treatment, patients with metastatic HB have a poor prognosis, and survivors often have permanent side effects attributable to chemotherapy. In an effort to improve survival and lessen long-term complications of HB, we have searched for novel molecular vulnerabilities using a combination of patient derived cell lines, metabolomics, and RNA sequencing of human samples at diagnosis and follow-up. These studies have shed light on pathogenesis and identified putative targets for future therapies in children with advanced HB.</p></div>","PeriodicalId":7214,"journal":{"name":"Advances in biological regulation","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S221249262300043X/pdfft?md5=7d1cb69691b41ae0282774274077ed6c&pid=1-s2.0-S221249262300043X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136093654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advances in biological regulation
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1