Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2025-01-04 DOI:10.1007/s00449-024-03115-z
Hadeer E Ali, Bahaa A Hemdan, Mehrez E El-Naggar, Mohamed Azab El-Liethy, Dipak A Jadhav, Hoda H El-Hendawy, M Ali, Gamila E El-Taweel
{"title":"Harnessing the power of microbial fuel cells as pioneering green technology: advancing sustainable energy and wastewater treatment through innovative nanotechnology.","authors":"Hadeer E Ali, Bahaa A Hemdan, Mehrez E El-Naggar, Mohamed Azab El-Liethy, Dipak A Jadhav, Hoda H El-Hendawy, M Ali, Gamila E El-Taweel","doi":"10.1007/s00449-024-03115-z","DOIUrl":null,"url":null,"abstract":"<p><p>The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance. Microbial fuel cells (MFCs) provide a viable option by producing power from the oxidation of organic and biodegradable chemicals using microorganisms as natural catalysts. This technology has sparked widespread attention due to its combined potential to cleanse wastewater and recover energy. The review presents a complete examination of current advances in MFCs technology, with a focus on the crucial role of anode materials in improving their performance. Moreover, different anode materials and their nanoscale modifications are being studied to boost MFC efficiency. This current review also focused on the effects of surface modifications and different anode compositions on power generation and system stability. It also investigates the electrochemical principles behind these enhancements, providing insights into the economic potential of MFCs. MFCs provide a long-term solution to energy and environmental issues by addressing both wastewater treatment and energy production.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03115-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The purpose of this review is to gain attention about intro the advanced and green technology that has dual action for both clean wastewater and produce energy. Water scarcity and the continuous energy crisis have arisen as major worldwide concerns, requiring the creation of ecologically friendly and sustainable energy alternatives. The rapid exhaustion of fossil resources needs the development of alternative energy sources that reduce carbon emissions while maintaining ecological balance. Microbial fuel cells (MFCs) provide a viable option by producing power from the oxidation of organic and biodegradable chemicals using microorganisms as natural catalysts. This technology has sparked widespread attention due to its combined potential to cleanse wastewater and recover energy. The review presents a complete examination of current advances in MFCs technology, with a focus on the crucial role of anode materials in improving their performance. Moreover, different anode materials and their nanoscale modifications are being studied to boost MFC efficiency. This current review also focused on the effects of surface modifications and different anode compositions on power generation and system stability. It also investigates the electrochemical principles behind these enhancements, providing insights into the economic potential of MFCs. MFCs provide a long-term solution to energy and environmental issues by addressing both wastewater treatment and energy production.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用微生物燃料电池的力量作为开创性的绿色技术:通过创新纳米技术推进可持续能源和废水处理。
本文综述的目的是为了引起人们对引进具有清洁废水和生产能源双重作用的先进绿色技术的关注。水资源短缺和持续的能源危机已成为全世界关注的主要问题,需要创造对生态友好和可持续的替代能源。化石资源的迅速枯竭需要开发替代能源,既能减少碳排放,又能保持生态平衡。微生物燃料电池(mfc)提供了一种可行的选择,利用微生物作为天然催化剂,通过氧化有机和可生物降解的化学物质来发电。这项技术由于其净化废水和回收能源的综合潜力而引起了广泛的关注。本文综述了mfc技术的最新进展,重点介绍了阳极材料在提高其性能方面的关键作用。此外,人们正在研究不同的阳极材料及其纳米级修饰以提高MFC效率。本文还重点介绍了表面改性和不同阳极成分对发电和系统稳定性的影响。它还研究了这些增强背后的电化学原理,为mfc的经济潜力提供了见解。mfc通过解决废水处理和能源生产,为能源和环境问题提供了长期解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
Microbial community structure and functional characteristics in a membrane bioreactor used for real rural wastewater treatment. Metabolic engineering of Escherichia coli for enhanced production of p-coumaric acid via L-phenylalanine biosynthesis pathway. Bioprocess development for microbial production and purification of cellobiose lipids by the smut fungus Ustilago maydis DSM 4500. Enhancement of FK520 production in Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 by overexpressing the regulatory gene fkbR2. Environmental bioremediation of pharmaceutical residues: microbial processes and technological innovations: a review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1