Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson
{"title":"FXR1 Deletion from Cortical Parvalbumin Interneurons Modifies their Excitatory Synaptic Responses.","authors":"Katherine S Scheuer, Anna M Jansson, Minjie Shen, Xinyu Zhao, Meyer B Jackson","doi":"10.1523/ENEURO.0363-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically-encoded hybrid voltage sensor in PV interneurons, and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared to wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.<b>Significance statement</b> Parvalbumin interneurons have been implicated in schizophrenia and autism. The RNA binding protein FXR1, a member of the fragile X protein family has been linked to mental illnesses and disabilities. Voltage imaging from parvalbumin interneurons in cortical slices revealed that targeted ablation of FXR1 from these neurons alters the amplitude and dynamics of their excitatory synaptic responses. These changes have the potential to alter circuit processing and behavior, and may be relevant to FXR1-linked mental illnesses.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0363-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fragile X autosomal homolog 1 (FXR1), a member of the fragile X messenger riboprotein 1 family, has been linked to psychiatric disorders including autism and schizophrenia. Parvalbumin (PV) interneurons play critical roles in cortical processing, and have been implicated in FXR1-linked mental illnesses. Targeted deletion of FXR1 from PV interneurons in mice has been shown to alter cortical excitability and elicit schizophrenia-like behavior. This indicates that FXR1 regulates behaviorally relevant electrophysiological functions in PV interneurons. We therefore expressed a genetically-encoded hybrid voltage sensor in PV interneurons, and used voltage imaging in slices of mouse somatosensory cortex to assess the impact of targeted FXR1 deletion. These experiments showed that PV interneurons lacking FXR1 had excitatory synaptic potentials with larger amplitudes and shorter latencies compared to wild type. Synaptic potential rise-times, decay-times, and half-widths were also impacted to degrees that varied between cortical layer and synaptic input. Thus, FXR1 modulates the responsiveness of PV interneurons to excitatory synaptic inputs. This will enable FXR1 to control cortical processing in subtle ways, with the potential to influence behavior and contribute to psychiatric dysfunction.Significance statement Parvalbumin interneurons have been implicated in schizophrenia and autism. The RNA binding protein FXR1, a member of the fragile X protein family has been linked to mental illnesses and disabilities. Voltage imaging from parvalbumin interneurons in cortical slices revealed that targeted ablation of FXR1 from these neurons alters the amplitude and dynamics of their excitatory synaptic responses. These changes have the potential to alter circuit processing and behavior, and may be relevant to FXR1-linked mental illnesses.
期刊介绍:
An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.