Xiaomeng Cheng, Li Zhang, Chen Zhao, Min Peng, Yuanli Qin, Wei Han, Fugui Zhang, Daoming Zeng, Fan Yang
{"title":"Spatial distribution and driving factors of soil selenium on the Leizhou Peninsula, southern China.","authors":"Xiaomeng Cheng, Li Zhang, Chen Zhao, Min Peng, Yuanli Qin, Wei Han, Fugui Zhang, Daoming Zeng, Fan Yang","doi":"10.1007/s10653-024-02349-w","DOIUrl":null,"url":null,"abstract":"<p><p>Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil. The Leizhou Peninsula is an important agricultural region in China, but the concentration and spatial distribution of Se in its soils remain unclear. To address this issue, we analyzed Se concentration data from 3333 soil samples collected at the depth of 0-20 cm from the Leizhou Peninsula, covering an area of 13,225 km<sup>2</sup>. The results indicate that the mean soil Se concentration was 0.50 mg kg<sup>-1</sup>, with Se-enriched soils being widely distributed. This provides prospects for the development of Se-enriched crops. Using random forest (RF) modeling and correlation analysis, the clay minerals (Fe-Al oxides), chemical index of alteration (CIA), and soil organic carbon (SOC) have been identified as the principal determinants of Se distribution in soil. During the weathering processes of the basalts, Fe-Al oxides serve as a crucial factor in Se accumulation in the red soils. Furthermore, the tropical climate further contributes to increasing the degree of weathering and the proportion of clay minerals and SOC in the soil. Atmospheric deposition derived from marine and precipitation is another important factor that promotes Se flux into soils. In conclusion, the distribution pattern of Se is jointly determined by the weathering process of basalt and climatic conditions. The results of the geographically weighted regression (GWR) analysis revealed that SOC, Al<sub>2</sub>O<sub>3</sub>, TFe<sub>2</sub>O<sub>3</sub> and CIA change spatially and exhibit a spatial non-stationarity relationship with Se. This study offers a theoretical foundation and practical guidance for the sustainable development of Se-enriched agriculture and similar climate settings worldwide.</p>","PeriodicalId":11759,"journal":{"name":"Environmental Geochemistry and Health","volume":"47 2","pages":"39"},"PeriodicalIF":3.2000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Geochemistry and Health","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s10653-024-02349-w","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Selenium (Se) is an essential element for humans, playing a critical role in the functioning of the immune system. The global prevalence of dietary Se deficiency is a significant public health concern, largely attributed to the low levels of Se present in crops. The sufficient Se in plants and humans is determined by the presence of stable Se sources in the soil. The Leizhou Peninsula is an important agricultural region in China, but the concentration and spatial distribution of Se in its soils remain unclear. To address this issue, we analyzed Se concentration data from 3333 soil samples collected at the depth of 0-20 cm from the Leizhou Peninsula, covering an area of 13,225 km2. The results indicate that the mean soil Se concentration was 0.50 mg kg-1, with Se-enriched soils being widely distributed. This provides prospects for the development of Se-enriched crops. Using random forest (RF) modeling and correlation analysis, the clay minerals (Fe-Al oxides), chemical index of alteration (CIA), and soil organic carbon (SOC) have been identified as the principal determinants of Se distribution in soil. During the weathering processes of the basalts, Fe-Al oxides serve as a crucial factor in Se accumulation in the red soils. Furthermore, the tropical climate further contributes to increasing the degree of weathering and the proportion of clay minerals and SOC in the soil. Atmospheric deposition derived from marine and precipitation is another important factor that promotes Se flux into soils. In conclusion, the distribution pattern of Se is jointly determined by the weathering process of basalt and climatic conditions. The results of the geographically weighted regression (GWR) analysis revealed that SOC, Al2O3, TFe2O3 and CIA change spatially and exhibit a spatial non-stationarity relationship with Se. This study offers a theoretical foundation and practical guidance for the sustainable development of Se-enriched agriculture and similar climate settings worldwide.
期刊介绍:
Environmental Geochemistry and Health publishes original research papers and review papers across the broad field of environmental geochemistry. Environmental geochemistry and health establishes and explains links between the natural or disturbed chemical composition of the earth’s surface and the health of plants, animals and people.
Beneficial elements regulate or promote enzymatic and hormonal activity whereas other elements may be toxic. Bedrock geochemistry controls the composition of soil and hence that of water and vegetation. Environmental issues, such as pollution, arising from the extraction and use of mineral resources, are discussed. The effects of contaminants introduced into the earth’s geochemical systems are examined. Geochemical surveys of soil, water and plants show how major and trace elements are distributed geographically. Associated epidemiological studies reveal the possibility of causal links between the natural or disturbed geochemical environment and disease. Experimental research illuminates the nature or consequences of natural or disturbed geochemical processes.
The journal particularly welcomes novel research linking environmental geochemistry and health issues on such topics as: heavy metals (including mercury), persistent organic pollutants (POPs), and mixed chemicals emitted through human activities, such as uncontrolled recycling of electronic-waste; waste recycling; surface-atmospheric interaction processes (natural and anthropogenic emissions, vertical transport, deposition, and physical-chemical interaction) of gases and aerosols; phytoremediation/restoration of contaminated sites; food contamination and safety; environmental effects of medicines; effects and toxicity of mixed pollutants; speciation of heavy metals/metalloids; effects of mining; disturbed geochemistry from human behavior, natural or man-made hazards; particle and nanoparticle toxicology; risk and the vulnerability of populations, etc.