Yuhang Liu, Fan Peng, Jie Shu, Xiaolan Li, Chengfu Yuan
{"title":"Decoding Epilepsy: Prickle2 and Multifaceted Molecular Pathway Connections.","authors":"Yuhang Liu, Fan Peng, Jie Shu, Xiaolan Li, Chengfu Yuan","doi":"10.2174/0113816128333500241031100623","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets.</p><p><strong>Methods: </strong>This review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as \"Prickle2,\" \"epilepsy,\" and \"PCP pathway,\" focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature.</p><p><strong>Results: </strong>Although there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer.</p><p><strong>Conclusion: </strong>Due to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical design","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113816128333500241031100623","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The Prickle2 (Pk2) gene shows promising potential in uncovering the underlying causes of epilepsy, a neurological disorder that is currently not well understood. This paper utilizes the online tool PubMed to gather and condense information on the involvement of PCP channels and the associated roles of PCP pathway molecules in the onset of epilepsy. These findings are significant for advancing epilepsy treatment. Additionally, the paper discusses future directions for clinical trials and outlines potential therapeutic targets.
Methods: This review systematically analyzes the biological functions and mechanisms of the Prickle2 gene in epilepsy. Studies were retrieved from PubMed using keywords such as "Prickle2," "epilepsy," and "PCP pathway," focusing on research published between 2000 and 2023 in English. Inclusion criteria included original studies and reviews on Prickle2's role in epilepsy. Studies unrelated to these topics or lacking sufficient data were excluded. Key data on Prickle2's functions and its link to epilepsy were extracted, and findings were summarized after a quality assessment of the literature.
Results: Although there are currently conflicting results regarding the possibility that Prickle2 may cause epilepsy in different organisms, we believe that as more cases involving Prickle2 mutations are reported and more related animal experiments are conducted, the findings will become clearer.
Conclusion: Due to the biological functions and mechanisms associated with the Prickle2 protein, it may serve as a useful biomarker or potential therapeutic target for epilepsy treatment.
期刊介绍:
Current Pharmaceutical Design publishes timely in-depth reviews and research articles from leading pharmaceutical researchers in the field, covering all aspects of current research in rational drug design. Each issue is devoted to a single major therapeutic area guest edited by an acknowledged authority in the field.
Each thematic issue of Current Pharmaceutical Design covers all subject areas of major importance to modern drug design including: medicinal chemistry, pharmacology, drug targets and disease mechanism.