Preliminary study of gunshot residues in entry holes at different angles: Feasibility of using LIBS to support trajectory estimation.

IF 2.2 3区 医学 Q1 MEDICINE, LEGAL Forensic science international Pub Date : 2024-12-25 DOI:10.1016/j.forsciint.2024.112349
Jose Antonio Rodriguez-Pascual, Alicia Doña-Fernández, Francisco Javier Hernández-Crespo, Yolanda Loarce-Tejada, Pedro Sogo Sanchez, Esperanza Gutiérrez-Redomero, Francisco Javier Gomez-Laina
{"title":"Preliminary study of gunshot residues in entry holes at different angles: Feasibility of using LIBS to support trajectory estimation.","authors":"Jose Antonio Rodriguez-Pascual, Alicia Doña-Fernández, Francisco Javier Hernández-Crespo, Yolanda Loarce-Tejada, Pedro Sogo Sanchez, Esperanza Gutiérrez-Redomero, Francisco Javier Gomez-Laina","doi":"10.1016/j.forsciint.2024.112349","DOIUrl":null,"url":null,"abstract":"<p><p>Firearm-related scenarios can be highly complex, involving multiple shooters, firearms, types of ammunition, victims, and various impact zones. Obtaining the maximum amount of information to connect each piece of the puzzle is crucial for resolving these cases. Currently, new tools are being developed in the forensic field that facilitate both fieldwork and laboratory analysis, enabling the estimation of trajectories, identification of shooters, and more. Among these techniques, the application of Laser-Induced Breakdown Spectroscopy (LIBS) has gained prominence in ballistic forensic over the past few decades. This study aims to evaluate the information that can be derived from analyzing the spatial distribution of elements composing gunshot residues in entry bullet holes at different angles of incidence using the LIBS technique on various surfaces, such as stainless steel, particleboard, and PVC foam board, using both jacketed and semi-jacketed ammunition. Gunshot residues adhering to the surfaces due to material transfer during projectile transit were collected using adhesive film for subsequent scanning. The results of this preliminary study demonstrate that it is possible to obtain an image of the distribution of the gunshot residue elements analysed (copper and lead) within the entry hole. This would provide additional information to support the estimation of the shot direction. Furthermore, differences in the concentration and distribution of copper and lead in the contact area were observed. Although the obtained density map is dependent on the material of the impact surface, in harder materials such as the stainless steel used in this study, it allows for the differentiation between the two types of ammunition, enabling the correlation of the ammunition with the corresponding entry hole.</p>","PeriodicalId":12341,"journal":{"name":"Forensic science international","volume":"367 ","pages":"112349"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forensic science international","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.forsciint.2024.112349","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
引用次数: 0

Abstract

Firearm-related scenarios can be highly complex, involving multiple shooters, firearms, types of ammunition, victims, and various impact zones. Obtaining the maximum amount of information to connect each piece of the puzzle is crucial for resolving these cases. Currently, new tools are being developed in the forensic field that facilitate both fieldwork and laboratory analysis, enabling the estimation of trajectories, identification of shooters, and more. Among these techniques, the application of Laser-Induced Breakdown Spectroscopy (LIBS) has gained prominence in ballistic forensic over the past few decades. This study aims to evaluate the information that can be derived from analyzing the spatial distribution of elements composing gunshot residues in entry bullet holes at different angles of incidence using the LIBS technique on various surfaces, such as stainless steel, particleboard, and PVC foam board, using both jacketed and semi-jacketed ammunition. Gunshot residues adhering to the surfaces due to material transfer during projectile transit were collected using adhesive film for subsequent scanning. The results of this preliminary study demonstrate that it is possible to obtain an image of the distribution of the gunshot residue elements analysed (copper and lead) within the entry hole. This would provide additional information to support the estimation of the shot direction. Furthermore, differences in the concentration and distribution of copper and lead in the contact area were observed. Although the obtained density map is dependent on the material of the impact surface, in harder materials such as the stainless steel used in this study, it allows for the differentiation between the two types of ammunition, enabling the correlation of the ammunition with the corresponding entry hole.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Forensic science international
Forensic science international 医学-医学:法
CiteScore
5.00
自引率
9.10%
发文量
285
审稿时长
49 days
期刊介绍: Forensic Science International is the flagship journal in the prestigious Forensic Science International family, publishing the most innovative, cutting-edge, and influential contributions across the forensic sciences. Fields include: forensic pathology and histochemistry, chemistry, biochemistry and toxicology, biology, serology, odontology, psychiatry, anthropology, digital forensics, the physical sciences, firearms, and document examination, as well as investigations of value to public health in its broadest sense, and the important marginal area where science and medicine interact with the law. The journal publishes: Case Reports Commentaries Letters to the Editor Original Research Papers (Regular Papers) Rapid Communications Review Articles Technical Notes.
期刊最新文献
Investigating 3-CMC metabolism: Insights from liver microsomes and postmortem biological matrix. Identification and discrimination of human keratinized tissues using ATR-FTIR and chemometrics. Impact of thermal exposure on deciduous teeth: A comparative analysis with permanent teeth. Preliminary study of gunshot residues in entry holes at different angles: Feasibility of using LIBS to support trajectory estimation. Experience based efficient approach for DNA-led identification of highly carbonized human remains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1