{"title":"Genetic landscape in undiagnosed patients with syndromic hearing loss revealed by whole exome sequencing and phenotype similarity search.","authors":"Hideki Mutai, Fuyuki Miya, Kiyomitsu Nara, Nobuko Yamamoto, Satomi Inoue, Haruka Murakami, Kazunori Namba, Hiroshi Shitara, Shujiro Minami, Atsuko Nakano, Yukiko Arimoto, Noriko Morimoto, Taiji Kawasaki, Koichiro Wasano, Masato Fujioka, Yasue Uchida, Kimitaka Kaga, Kazuki Yamazawa, Yoshiaki Kikkawa, Kenjiro Kosaki, Tatsuhiko Tsunoda, Tatsuo Matsunaga","doi":"10.1007/s00439-024-02719-5","DOIUrl":null,"url":null,"abstract":"<p><p>There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features. Causative genes were identified in 22 families, including both established genes associated with syndromic hearing loss (PTPN11, CHD7, KARS1, OPA1, DLX5, MITF, SOX10, MYO7A, and USH2A) and those associated with nonsyndromic hearing loss (STRC, EYA4, and KCNQ4). Association of a DLX5 variant with incomplete partition type I (IP-I) anomaly of the inner ear was identified in a patient with cleft lip and palate and acetabular dysplasia. The study identified COL1A1, CFAP52, and NSD1 as causative genes through phenotype similarity search or by analogy. ZBTB10 was proposed as a novel candidate gene for syndromic hearing loss with IP-I. A mouse model with homozygous Zbtb10 frameshift variant resulted in embryonic lethality, suggesting the importance of this gene for early embryonic development. Our data highlight a wide spectrum of rare causative genes in patients with syndromic hearing loss, and demonstrate that WES analysis combined with phenotype similarity search is a valuable approach for clinical genetic testing of undiagnosed disease.</p>","PeriodicalId":13175,"journal":{"name":"Human Genetics","volume":" ","pages":"93-112"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00439-024-02719-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
There are hundreds of rare syndromic diseases involving hearing loss, many of which are not targeted for clinical genetic testing. We systematically explored the genetic causes of undiagnosed syndromic hearing loss using a combination of whole exome sequencing (WES) and a phenotype similarity search system called PubCaseFinder. Fifty-five families with syndromic hearing loss of unknown cause were analyzed using WES after prescreening of several deafness genes depending on patient clinical features. Causative genes were identified in 22 families, including both established genes associated with syndromic hearing loss (PTPN11, CHD7, KARS1, OPA1, DLX5, MITF, SOX10, MYO7A, and USH2A) and those associated with nonsyndromic hearing loss (STRC, EYA4, and KCNQ4). Association of a DLX5 variant with incomplete partition type I (IP-I) anomaly of the inner ear was identified in a patient with cleft lip and palate and acetabular dysplasia. The study identified COL1A1, CFAP52, and NSD1 as causative genes through phenotype similarity search or by analogy. ZBTB10 was proposed as a novel candidate gene for syndromic hearing loss with IP-I. A mouse model with homozygous Zbtb10 frameshift variant resulted in embryonic lethality, suggesting the importance of this gene for early embryonic development. Our data highlight a wide spectrum of rare causative genes in patients with syndromic hearing loss, and demonstrate that WES analysis combined with phenotype similarity search is a valuable approach for clinical genetic testing of undiagnosed disease.
期刊介绍:
Human Genetics is a monthly journal publishing original and timely articles on all aspects of human genetics. The Journal particularly welcomes articles in the areas of Behavioral genetics, Bioinformatics, Cancer genetics and genomics, Cytogenetics, Developmental genetics, Disease association studies, Dysmorphology, ELSI (ethical, legal and social issues), Evolutionary genetics, Gene expression, Gene structure and organization, Genetics of complex diseases and epistatic interactions, Genetic epidemiology, Genome biology, Genome structure and organization, Genotype-phenotype relationships, Human Genomics, Immunogenetics and genomics, Linkage analysis and genetic mapping, Methods in Statistical Genetics, Molecular diagnostics, Mutation detection and analysis, Neurogenetics, Physical mapping and Population Genetics. Articles reporting animal models relevant to human biology or disease are also welcome. Preference will be given to those articles which address clinically relevant questions or which provide new insights into human biology.
Unless reporting entirely novel and unusual aspects of a topic, clinical case reports, cytogenetic case reports, papers on descriptive population genetics, articles dealing with the frequency of polymorphisms or additional mutations within genes in which numerous lesions have already been described, and papers that report meta-analyses of previously published datasets will normally not be accepted.
The Journal typically will not consider for publication manuscripts that report merely the isolation, map position, structure, and tissue expression profile of a gene of unknown function unless the gene is of particular interest or is a candidate gene involved in a human trait or disorder.